"T(x, y, z, w) = ( 3y -4z, x +2y+4z-w, 7z, -y-w)"
Write the standard matrix for T.
"A=\\begin{bmatrix}\n 0 & 3 & -4 & 0\\\\\n 1 & 2 & 4 & -1 \\\\\n 0 & 0 & 7 & 0\\\\\n 0 & -1 & 0 & -1\n\\end{bmatrix}"One-to-one is the same as onto for square matrices.
In general, a transformation T is both one-to-one and onto if and only if "T(\\bf x )=\\bf b"has exactly one solution for all "\\bf b" in "\\Bbb{R}^m."
"\\begin{bmatrix}\n 0 & 3 & -4 & 0 & &0\\\\\n 1 & 2 & 4 & -1 & &0 \\\\\n 0 & 0 & 7 & 0 & &0\\\\\n 0 & -1 & 0 & -1 & &0\n\\end{bmatrix}" Swap rows 1 and 2:
"\\begin{bmatrix}\n 1 & 2 & 4 &-1& &0\\\\\n 0 & 3 & -4 & 0 & &0 \\\\\n 0 & 0 & 7 & 0 & &0\\\\\n 0 & -1 & 0 & -1 & &0\n\\end{bmatrix}" "R_2={R_2\/3}"
"\\begin{bmatrix}\n 1 & 2 & 4 &-1& &0\\\\\n 0 & 1 & -4\/3 & 0 & &0 \\\\\n 0 & 0 & 7 & 0 & &0\\\\\n 0 & -1 & 0 & -1 & &0\n\\end{bmatrix}" "R_1=R_1-(2)R_2"
"\\begin{bmatrix}\n 1 & 0 & 20\/3 &-1& &0\\\\\n 0 & 1 & -4\/3 & 0 & &0 \\\\\n 0 & 0 & 7 & 0 & &0\\\\\n 0 & -1 & 0 & -1 & &0\n\\end{bmatrix}" "R_4=R_4+R_2"
"\\begin{bmatrix}\n 1 & 0 & 20\/3 &-1& &0\\\\\n 0 & 1 & -4\/3 & 0 & &0 \\\\\n 0 & 0 & 7 & 0 & &0\\\\\n 0 & 0 & -4\/3 & -1 & &0\n\\end{bmatrix}" "R_3=R_3\/7"
"\\begin{bmatrix}\n 1 & 0 & 20\/3 &-1& &0\\\\\n 0 & 1 & -4\/3 & 0 & &0 \\\\\n 0 & 0 & 1 & 0 & &0\\\\\n 0 & 0 & -4\/3 & -1 & &0\n\\end{bmatrix}" "R_1=R_1-(20\/3)R_3"
"\\begin{bmatrix}\n 1 & 0 & 0 &-1& &0\\\\\n 0 & 1 & -4\/3 & 0 & &0 \\\\\n 0 & 0 & 1 & 0 & &0\\\\\n 0 & 0 & -4\/3 & -1 & &0\n\\end{bmatrix}" "R_2=R_2+(4\/3)R_3"
"\\begin{bmatrix}\n 1 & 0 & 0 &-1& &0\\\\\n 0 & 1 & 0 & 0 & &0 \\\\\n 0 & 0 & 1 & 0 & &0\\\\\n 0 & 0 & -4\/3 & -1 & &0\n\\end{bmatrix}" "R_4=R_4+(4\/3)R_3"
"\\begin{bmatrix}\n 1 & 0 & 0 &-1& &0\\\\\n 0 & 1 & 0 & 0 & &0 \\\\\n 0 & 0 & 1 & 0 & &0\\\\\n 0 & 0 & 0 & -1 & &0\n\\end{bmatrix}" "R_1=R_1-R_4"
"\\begin{bmatrix}\n 1 & 0 & 0 & 0& &0\\\\\n 0 & 1 & 0 & 0 & &0 \\\\\n 0 & 0 & 1 & 0 & &0\\\\\n 0 & 0 & 0 & -1 & &0\n\\end{bmatrix}" "R_4=R_4\\cdot(-1)"
"\\begin{bmatrix}\n 1 & 0 & 0 & 0& &0\\\\\n 0 & 1 & 0 & 0 & &0 \\\\\n 0 & 0 & 1 & 0 & &0\\\\\n 0 & 0 & 0 & 1 & &0\n\\end{bmatrix}"The columns of matrix are linearly independent, which happens precisely when the matrix has a pivot position in every column.
Therefore "T" is one-to-one.
Comments
Leave a comment