Let "e_{1} = eS_1, e_2 = eS_2, e_2 = e_1S"", e = {(1;0;0), (0;1;0), (0;0;1)}" and "A = \\begin{pmatrix}\n 1& -2 & 0\\\\\n -2& 1 & 1\\\\\n 0 & 1 & 1\n\\end{pmatrix}" is the mathix of Q(x).
Then "S_1 = \\begin{pmatrix}\n 1& 1 & 0\\\\\n 0& 1 & 0\\\\\n 0 & 0 & 1\n\\end{pmatrix}" , "S_2 = \\begin{pmatrix}\n 1& 0 & 0\\\\\n 0& 1 & 2\\\\\n 0 & 2 & 1\n\\end{pmatrix}" , "e = e_1S_1^{-1}" , "e_2 = eS_2 = e_1S_1^{-1}S_2"
That is "S = S_1^{-1}S_2"
"S_1^{-1} = \\begin{pmatrix}\n 1& -1 & 0\\\\\n 0& 1 & 0\\\\\n 0 & 0 & 1\n\\end{pmatrix}" "S =S_1^{-1}S_2 = \\begin{pmatrix}\n 1& -1 & 0\\\\\n 0& 1 & 0\\\\\n 0 & 0 & 1\n\\end{pmatrix} \\cdot \\begin{pmatrix}\n 1& 0 & 0\\\\\n 0& 1 & 2\\\\\n 0 & 2 & 1\n\\end{pmatrix}\n= \\begin{pmatrix}\n 1& -1 & -2\\\\\n 0& 1 & 2\\\\\n 0 & 2 & 1\n\\end{pmatrix}"
"A' = S^TAS = \\begin{pmatrix}\n 1& 0 & 0\\\\\n -1& 1 & 2\\\\\n -2 & 2 & 1 \n\\end{pmatrix} \\cdot \\begin{pmatrix}\n 1& -2 & 0\\\\\n -2& 1 & 1\\\\\n 0 & 1 & 1\n\\end{pmatrix} \\cdot \\begin{pmatrix}\n 1& -1 & -2\\\\\n 0& 1 & 2\\\\\n 0 & 2 & 1\n\\end{pmatrix}" "="
"= \\begin{pmatrix}\n 1& -2 & 0\\\\\n -3& 5 & 3\\\\\n -6 & 7 & 3\n\\end{pmatrix} \\cdot \\begin{pmatrix}\n 1& -1 & -2\\\\\n 0& 1 & 2\\\\\n 0 & 2 & 1\n\\end{pmatrix}" "= \\begin{pmatrix}\n 1& -3 & -6\\\\\n -3& 14 & 19\\\\\n -6 & 19 & 29\n\\end{pmatrix}" .
So, "Q(y) = y_1^2 - 6y_1y_2 -12y_1y_3 + 14y_2^2 + 38y_2y_3 +29y_3^2"
Comments
Leave a comment