Question #125838
Let (x1,x2,x3) and (y1,y2,y3) represent the coordinates with respect to the bases B1 = {(1, 0, 0),(1, 1, 0),(0, 0, 1)},B2 = {(1, 0, 0),(0, 1, 2),(0, 2, 1)}. If Q(x) = x1^2-4x1x2+2x2x3+x2^2+x3^2 , find the representation of Q in terms of (y1,y2,y3)
1
Expert's answer
2020-07-12T17:47:53-0400

Let e1=eS1,e2=eS2,e2=e1Se_{1} = eS_1, e_2 = eS_2, e_2 = e_1S,e=(1;0;0),(0;1;0),(0;0;1), e = {(1;0;0), (0;1;0), (0;0;1)} and A=(120211011)A = \begin{pmatrix} 1& -2 & 0\\ -2& 1 & 1\\ 0 & 1 & 1 \end{pmatrix} is the mathix of Q(x).

Then S1=(110010001)S_1 = \begin{pmatrix} 1& 1 & 0\\ 0& 1 & 0\\ 0 & 0 & 1 \end{pmatrix} , S2=(100012021)S_2 = \begin{pmatrix} 1& 0 & 0\\ 0& 1 & 2\\ 0 & 2 & 1 \end{pmatrix} , e=e1S11e = e_1S_1^{-1} , e2=eS2=e1S11S2e_2 = eS_2 = e_1S_1^{-1}S_2


That is S=S11S2S = S_1^{-1}S_2


S11=(110010001)S_1^{-1} = \begin{pmatrix} 1& -1 & 0\\ 0& 1 & 0\\ 0 & 0 & 1 \end{pmatrix} S=S11S2=(110010001)(100012021)=(112012021)S =S_1^{-1}S_2 = \begin{pmatrix} 1& -1 & 0\\ 0& 1 & 0\\ 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1& 0 & 0\\ 0& 1 & 2\\ 0 & 2 & 1 \end{pmatrix} = \begin{pmatrix} 1& -1 & -2\\ 0& 1 & 2\\ 0 & 2 & 1 \end{pmatrix}


A=STAS=(100112221)(120211011)(112012021)A' = S^TAS = \begin{pmatrix} 1& 0 & 0\\ -1& 1 & 2\\ -2 & 2 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1& -2 & 0\\ -2& 1 & 1\\ 0 & 1 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1& -1 & -2\\ 0& 1 & 2\\ 0 & 2 & 1 \end{pmatrix} ==


=(120353673)(112012021)= \begin{pmatrix} 1& -2 & 0\\ -3& 5 & 3\\ -6 & 7 & 3 \end{pmatrix} \cdot \begin{pmatrix} 1& -1 & -2\\ 0& 1 & 2\\ 0 & 2 & 1 \end{pmatrix} =(1363141961929)= \begin{pmatrix} 1& -3 & -6\\ -3& 14 & 19\\ -6 & 19 & 29 \end{pmatrix} .


So, Q(y)=y126y1y212y1y3+14y22+38y2y3+29y32Q(y) = y_1^2 - 6y_1y_2 -12y_1y_3 + 14y_2^2 + 38y_2y_3 +29y_3^2


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS