3. Use Cayley Hamilton theorem to find the value of the matrix given by
A8 − 5A7 + 7A6 − 3A5 + A4 − 5A3 + 8A2 − 2A + I if the matrix 𝐴 =
[
2 1 1
0 1 0
1 1 2
]
(a) Express cos7 θ in terms of multiples of angles.
(b) Express cos4 θ sin3 θ in terms of multiples of angles.
(c) Using complex numbers, prove that the, angles A, B and C of a planar triangle satisfy the relations (i) cos2 A + cos2 B + cos2 C = 1 − 2 cos A cos B cos C
(ii) sin 2A + sin 2B + sin 2C = 4 sin A sin B sin C.
Suppose A is a 3x3 matrix such that det(A) =16.Find the value of det[(4(A^-1)^T]
Find all solutions of this system.
4x + 2y + 3z = 0
3x − y + 2z = 0
x + 2y − z = 0
Compare the value of the determinant of the coefficient matrix to zero using the nature
of the solution.