Let the matrix be
C = ( a b c d e f g h i ) C = \begin{pmatrix}
a & b & c\\
d & e & f\\
g & h & i
\end{pmatrix} C = ⎝ ⎛ a d g b e h c f i ⎠ ⎞ , the determinant is det ( C ) = a ( e i − h f ) + b ( f g − d i ) + c ( d h − g e ) . \det(C) = a(ei-hf)+ b(fg-di)+c(dh-ge) . det ( C ) = a ( e i − h f ) + b ( f g − d i ) + c ( d h − g e ) .
det ( C + C ) = det ( 2 C ) = ∣ 2 a 2 b 2 c 2 d 2 e 2 f 2 g 2 h 2 i ∣ = 2 a ( 2 e ⋅ 2 i − 2 h ⋅ 2 f ) + 2 b ( 2 f ⋅ 2 g − 2 d ⋅ 2 i ) + 2 c ( 2 d ⋅ 2 h − 2 g ⋅ 2 e ) = 2 3 ⋅ ( a ( e i − h f ) + b ( f g − d i ) + c ( d h − g e ) ) = 8 ⋅ det ( C ) = 32. \det (C+C) = \det(2C) = \begin{vmatrix}
2a & 2b & 2c\\
2 d & 2e & 2f\\
2g & 2h & 2i
\end{vmatrix} = 2a(2e\cdot2i-2h\cdot2f)+ 2b(2f\cdot2g-2d\cdot2i)+2c(2d\cdot2h-2g\cdot2e) = 2^3\cdot\big(a(ei-hf)+ b(fg-di)+c(dh-ge)\big) = 8\cdot\det(C) = 32. det ( C + C ) = det ( 2 C ) = ∣ ∣ 2 a 2 d 2 g 2 b 2 e 2 h 2 c 2 f 2 i ∣ ∣ = 2 a ( 2 e ⋅ 2 i − 2 h ⋅ 2 f ) + 2 b ( 2 f ⋅ 2 g − 2 d ⋅ 2 i ) + 2 c ( 2 d ⋅ 2 h − 2 g ⋅ 2 e ) = 2 3 ⋅ ( a ( e i − h f ) + b ( f g − d i ) + c ( d h − g e ) ) = 8 ⋅ det ( C ) = 32.
Comments