(i) Let A=⎝⎛a11a21a31a12a22a32a13a23a33⎠⎞, B=⎝⎛b11b21b31b12b22b32a13b23b33⎠⎞.
Then (A+B)T=⎝⎛a11+b11a21+b21a31+b31a12+b12a22+b22a32+b32a13+b13a23+b23a33+b33⎠⎞T=
=⎝⎛a11+b11a12+b12a13+b13a21+b21a22+b22a23+b32a31+b31a32+b32a33+b33⎠⎞=
=⎝⎛b11+a11a12+b12b13+a13b21+a21b22+a22b32+a23b31+a31b32+a32b33+a33⎠⎞=
=⎝⎛b11b12b13b21b22b32b31b32b33⎠⎞+⎝⎛a11a12a13a21a22a23a31a32a33⎠⎞=BT+AT.
(ii) Taking into account that det(MT)=det(M) and det(MN)=det(M)det(N) for any 3×3 matrix M and N, we conclude that det(AB)T=det(AB)=det(A)det(B).
Comments
Leave a comment