(i) Let A = ( a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33 ) , B = ( b 11 b 12 a 13 b 21 b 22 b 23 b 31 b 32 b 33 ) . A=\left(\begin{array}{ccc} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{array}\right), \ \ \
B=\left(\begin{array}{ccc} b_{11} & b_{12} & a_{13} \\ b_{21} & b_{22} & b_{23} \\ b_{31} & b_{32} & b_{33} \end{array}\right). A = ⎝ ⎛ a 11 a 21 a 31 a 12 a 22 a 32 a 13 a 23 a 33 ⎠ ⎞ , B = ⎝ ⎛ b 11 b 21 b 31 b 12 b 22 b 32 a 13 b 23 b 33 ⎠ ⎞ .
Then ( A + B ) T = ( a 11 + b 11 a 12 + b 12 a 13 + b 13 a 21 + b 21 a 22 + b 22 a 23 + b 23 a 31 + b 31 a 32 + b 32 a 33 + b 33 ) T = (A+B)^T=\left(\begin{array}{ccc} a_{11}+b_{11} & a_{12}+b_{12} & a_{13}+b_{13} \\ a_{21}+b_{21} & a_{22}+b_{22} & a_{23}+b_{23} \\ a_{31}+b_{31} & a_{32}+b_{32} & a_{33}+b_{33} \end{array}\right)^T = ( A + B ) T = ⎝ ⎛ a 11 + b 11 a 21 + b 21 a 31 + b 31 a 12 + b 12 a 22 + b 22 a 32 + b 32 a 13 + b 13 a 23 + b 23 a 33 + b 33 ⎠ ⎞ T =
= ( a 11 + b 11 a 21 + b 21 a 31 + b 31 a 12 + b 12 a 22 + b 22 a 32 + b 32 a 13 + b 13 a 23 + b 32 a 33 + b 33 ) = =\left(\begin{array}{ccc} a_{11}+b_{11} & a_{21}+b_{21} & a_{31}+b_{31} \\ a_{12}+b_{12} & a_{22}+b_{22} & a_{32}+b_{32} \\ a_{13}+b_{13} & a_{23}+b_{32} & a_{33}+b_{33} \end{array}\right)= = ⎝ ⎛ a 11 + b 11 a 12 + b 12 a 13 + b 13 a 21 + b 21 a 22 + b 22 a 23 + b 32 a 31 + b 31 a 32 + b 32 a 33 + b 33 ⎠ ⎞ =
= ( b 11 + a 11 b 21 + a 21 b 31 + a 31 a 12 + b 12 b 22 + a 22 b 32 + a 32 b 13 + a 13 b 32 + a 23 b 33 + a 33 ) = =\left(\begin{array}{ccc} b_{11}+a_{11} & b_{21}+a_{21} & b_{31}+a_{31} \\ a_{12}+b_{12} & b_{22}+ a_{22} & b_{32}+a_{32} \\ b_{13}+a_{13} & b_{32}+a_{23} & b_{33}+ a_{33} \end{array}\right)= = ⎝ ⎛ b 11 + a 11 a 12 + b 12 b 13 + a 13 b 21 + a 21 b 22 + a 22 b 32 + a 23 b 31 + a 31 b 32 + a 32 b 33 + a 33 ⎠ ⎞ =
= ( b 11 b 21 b 31 b 12 b 22 b 32 b 13 b 32 b 33 ) + ( a 11 a 21 a 31 a 12 a 22 a 32 a 13 a 23 a 33 ) = B T + A T . =\left(\begin{array}{ccc} b_{11} & b_{21} & b_{31} \\ b_{12} & b_{22} & b_{32} \\ b_{13} & b_{32} & b_{33} \end{array}\right)+\left(\begin{array}{ccc} a_{11} & a_{21} & a_{31} \\ a_{12} & a_{22} & a_{32} \\ a_{13} & a_{23} & a_{33} \end{array}\right)=B^T+A^T. = ⎝ ⎛ b 11 b 12 b 13 b 21 b 22 b 32 b 31 b 32 b 33 ⎠ ⎞ + ⎝ ⎛ a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33 ⎠ ⎞ = B T + A T .
(ii) Taking into account that det ( M T ) = det ( M ) \det(M^T)=\det (M) det ( M T ) = det ( M ) and det ( M N ) = det ( M ) det ( N ) \det(MN)=\det(M)\det(N) det ( MN ) = det ( M ) det ( N ) for any 3 × 3 3\times 3 3 × 3 matrix M M M and N N N , we conclude that det ( A B ) T = det ( A B ) = det ( A ) det ( B ) . \det (AB)^T=\det(AB)= \det(A)\det(B). det ( A B ) T = det ( A B ) = det ( A ) det ( B ) .
Comments