(i) Let "A=\\left(\\begin{array}{ccc} a_{11} & a_{12} & a_{13} \\\\ a_{21} & a_{22} & a_{23} \\\\ a_{31} & a_{32} & a_{33} \\end{array}\\right), \\ \\ \\ \nB=\\left(\\begin{array}{ccc} b_{11} & b_{12} & a_{13} \\\\ b_{21} & b_{22} & b_{23} \\\\ b_{31} & b_{32} & b_{33} \\end{array}\\right)."
Then "(A+B)^T=\\left(\\begin{array}{ccc} a_{11}+b_{11} & a_{12}+b_{12} & a_{13}+b_{13} \\\\ a_{21}+b_{21} & a_{22}+b_{22} & a_{23}+b_{23} \\\\ a_{31}+b_{31} & a_{32}+b_{32} & a_{33}+b_{33} \\end{array}\\right)^T ="
"=\\left(\\begin{array}{ccc} a_{11}+b_{11} & a_{21}+b_{21} & a_{31}+b_{31} \\\\ a_{12}+b_{12} & a_{22}+b_{22} & a_{32}+b_{32} \\\\ a_{13}+b_{13} & a_{23}+b_{32} & a_{33}+b_{33} \\end{array}\\right)="
"=\\left(\\begin{array}{ccc} b_{11}+a_{11} & b_{21}+a_{21} & b_{31}+a_{31} \\\\ a_{12}+b_{12} & b_{22}+ a_{22} & b_{32}+a_{32} \\\\ b_{13}+a_{13} & b_{32}+a_{23} & b_{33}+ a_{33} \\end{array}\\right)="
"=\\left(\\begin{array}{ccc} b_{11} & b_{21} & b_{31} \\\\ b_{12} & b_{22} & b_{32} \\\\ b_{13} & b_{32} & b_{33} \\end{array}\\right)+\\left(\\begin{array}{ccc} a_{11} & a_{21} & a_{31} \\\\ a_{12} & a_{22} & a_{32} \\\\ a_{13} & a_{23} & a_{33} \\end{array}\\right)=B^T+A^T."
(ii) Taking into account that "\\det(M^T)=\\det (M)" and "\\det(MN)=\\det(M)\\det(N)" for any "3\\times 3" matrix "M" and "N", we conclude that "\\det (AB)^T=\\det(AB)= \\det(A)\\det(B)."
Comments
Leave a comment