Answer to Question #137170 in Linear Algebra for Lethu

Question #137170
Suppose A and B are 3x3 matrices. Prove that (i) (A+B)^T = B^T +A^T
(ii) det (AB)^T= det(A).det(B)
1
Expert's answer
2020-10-07T18:38:48-0400

(i) Let A=(a11a12a13a21a22a23a31a32a33),   B=(b11b12a13b21b22b23b31b32b33).A=\left(\begin{array}{ccc} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{array}\right), \ \ \ B=\left(\begin{array}{ccc} b_{11} & b_{12} & a_{13} \\ b_{21} & b_{22} & b_{23} \\ b_{31} & b_{32} & b_{33} \end{array}\right).


Then (A+B)T=(a11+b11a12+b12a13+b13a21+b21a22+b22a23+b23a31+b31a32+b32a33+b33)T=(A+B)^T=\left(\begin{array}{ccc} a_{11}+b_{11} & a_{12}+b_{12} & a_{13}+b_{13} \\ a_{21}+b_{21} & a_{22}+b_{22} & a_{23}+b_{23} \\ a_{31}+b_{31} & a_{32}+b_{32} & a_{33}+b_{33} \end{array}\right)^T =


=(a11+b11a21+b21a31+b31a12+b12a22+b22a32+b32a13+b13a23+b32a33+b33)==\left(\begin{array}{ccc} a_{11}+b_{11} & a_{21}+b_{21} & a_{31}+b_{31} \\ a_{12}+b_{12} & a_{22}+b_{22} & a_{32}+b_{32} \\ a_{13}+b_{13} & a_{23}+b_{32} & a_{33}+b_{33} \end{array}\right)=


=(b11+a11b21+a21b31+a31a12+b12b22+a22b32+a32b13+a13b32+a23b33+a33)==\left(\begin{array}{ccc} b_{11}+a_{11} & b_{21}+a_{21} & b_{31}+a_{31} \\ a_{12}+b_{12} & b_{22}+ a_{22} & b_{32}+a_{32} \\ b_{13}+a_{13} & b_{32}+a_{23} & b_{33}+ a_{33} \end{array}\right)=


=(b11b21b31b12b22b32b13b32b33)+(a11a21a31a12a22a32a13a23a33)=BT+AT.=\left(\begin{array}{ccc} b_{11} & b_{21} & b_{31} \\ b_{12} & b_{22} & b_{32} \\ b_{13} & b_{32} & b_{33} \end{array}\right)+\left(\begin{array}{ccc} a_{11} & a_{21} & a_{31} \\ a_{12} & a_{22} & a_{32} \\ a_{13} & a_{23} & a_{33} \end{array}\right)=B^T+A^T.



(ii) Taking into account that det(MT)=det(M)\det(M^T)=\det (M) and det(MN)=det(M)det(N)\det(MN)=\det(M)\det(N) for any 3×33\times 3 matrix MM and NN, we conclude that det(AB)T=det(AB)=det(A)det(B).\det (AB)^T=\det(AB)= \det(A)\det(B).





Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment