Given function was,
f(x)=x4−1
f(x)=a0P0(x)+a1P1(x)+a2P2(x)+... ,x∈[−1,1]
Multiplying both sides by Pm(x) and integrating from[−1,1] , we have
am=21(2m+1)−1∫1f(x)Pm(x)dx
Using Rodrigues formula we have
am=(−1)m2m+1m!2m+1−1∫1f(x)dxmdm(1−x2)mdx
Integrating by parts several times, we have:
am=2m+1m!2m+1−1∫1dxmdmf(x)(1−x2)mdx
Now we can calculate coefficients am:
a0=21−1∫1(x4−1)dx=21∣(5x5−x)∣−11=−54
a1=43−1∫14x3(1−x2)dx=3−1∫1(x3−x5)dx=3∣(4x4−6x6)∣−11=0
a2=8×2!5−1∫112x2(1−x2)2dx=415−1∫1(x2−2x4+x6)dx=
415(3x3−52x5+7x7)∣−11=74
a3=16×3!7−1∫124x(1−x2)3dx=47−1∫1(x−3x3+3x5−x7)dx=
=47(2x2−34x4+36x6−8x8)∣−11=0
a4=32×4!9−1∫124(1−x2)4dx=329−1∫1(1−4x2+6x4–4x6+x8)dx=
=329(x−34x3+56x5−74x7+9x9)∣−11=358
am=2m+1m!2m+1−1∫10×(1−x2)mdx=0,m≥5
−54P0(x)+74P2(x)+358P4(x)=−54×1+74×21(3x2−1)+358×835x4−30x2+3=
=−54+76x2−72+x4−76x2+353=x4−1 .
Answer: f(x)=−54P0(x)+74P2(x)+358P4(x).
Comments
Leave a comment