Answer to Question #135148 in Linear Algebra for SANKAR MADHAB PATHORI

Question #135148
Expand the fuction f(x) = x^4-1 in a series of the formSum of Ak Pk(x)
1
Expert's answer
2020-09-28T09:31:29-0400

Given function was,


f(x)=x41f(x)=x^4-1


f(x)=a0P0(x)+a1P1(x)+a2P2(x)+... ,x[1,1]f(x)=a_0P_0(x)+a_1P_1(x)+a_2P_2(x)+... \ ,\qquad x\in[-1,1]


Multiplying both sides by Pm(x)P_m(x) and integrating from[1,1][-1,1] , we have


am=12(2m+1)11f(x)Pm(x)dxa_m=\frac{1}2{}(2m+1)\int \limits _{-1}^{1} f(x)P_m(x)dx

Using Rodrigues formula we have


am=(1)m2m+12m+1m!11f(x)dm(1x2)mdxmdxa_m=(-1)^m \frac{2m+1}{2^{m+1}m!} \int\limits_{-1}^{1}f(x)\frac{d^m(1-x^2)^m}{dx^m} dx


Integrating by parts several times, we have:

am=2m+12m+1m!11dmf(x)dxm(1x2)mdxa_m=\frac{2m+1}{2^{m+1}m!}\int\limits_{-1}^{1} \frac{d^mf(x)}{dx^m}(1-x^2)^mdx


Now we can calculate coefficients am:a_m:

a0=1211(x41)dx=12(x55x)11=45a_0=\frac{1}{2}\int\limits_{-1}^{1}(x^4-1)dx=\frac{1}{2}|(\frac{x^5}{5}-x)|_{-1}^{1}=-\frac{4}{5}


a1=34114x3(1x2)dx=311(x3x5)dx=3(x44x66)11=0a_1=\frac{3}{4}\int\limits_{-1}^{1}4x^3 (1-x^2)dx= 3\int\limits_{-1}^{1}(x^3 -x^5)dx=3|(\frac{x^4}{4}-\frac{x^6}{6})\vert_{-1}^{1}=0


a2=58×2!1112x2(1x2)2dx=15411(x22x4+x6)dx=a_2=\frac{5}{8\times 2!}\int\limits_{-1}^{1}12x^2(1-x^2)^2dx= \frac{15}{4}\int\limits_{-1}^{1}(x^2 -2x^4+x^6)dx=


154(x332x55+x77)11=47\frac{15}{4}(\frac{x^3}{3}-\frac{2x^5}{5}+\frac{x^7}{7})|_{-1}^{1}=\frac{4}{7}


a3=716×3!1124x(1x2)3dx=7411(x3x3+3x5x7)dx=a_3=\frac{7}{16\times 3!}\int\limits_{-1}^{1}24x (1-x^2)^3dx= \frac{7}{4}\int\limits_{-1}^{1}(x-3x^3+3x^5-x^7)dx=


=74(x223x44+3x66x88)11=0=\frac{7}{4}(\frac{x^2}{2}-3\frac{x^4}{4}+3\frac{x^6}{6}-\frac{x^8}{8})\vert_{-1}^{1}=0


a4=932×4!1124(1x2)4dx=93211(14x2+6x44x6+x8)dx=a_4=\frac{9}{32\times 4!}\int\limits_{-1}^{1}24(1-x^2)^4dx= \frac{9}{32}\int\limits_{-1}^{1}(1-4x^2+6x^4–4x^6+x^8)dx=


=932(x4x33+6x554x77+x99)11=835=\frac{9}{32}(x-\frac{4x^3}{3}+\frac{6x^5}{5}-\frac{4x^7}{7}+\frac{x^9}{9})|_{-1}^{1}=\frac{8}{35}


am=2m+12m+1m!110×(1x2)mdx=0,    m5a_m=\frac{2m+1}{2^{m+1}m!}\int\limits_{-1}^{1}0\times (1-x^2)^mdx=0, \;\; m\geq5



45P0(x)+47P2(x)+835P4(x)=45×1+47×12(3x21)+835×35x430x2+38=-\frac{4}{5}P_0(x)+\frac{4}{7}P_2(x)+\frac{8}{35}P_4(x)= -\frac{4}{5}\times 1 +\frac{4}{7}\times \frac{1}{2}(3x^2-1)+\frac{8}{35}\times \frac{35x^4-30x^2+3}{8}=


=45+67x227+x467x2+335=x41=-\frac{4}{5}+\frac{6}{7}x^2-\frac{2}{7}+x^4-\frac{6}{7}x^2+\frac{3}{35}=x^4-1 .



Answer: f(x)=45P0(x)+47P2(x)+835P4(x).f(x)=-\frac{4}{5}P_0(x)+\frac{4}{7}P_2(x)+\frac{8}{35}P_4(x).



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment