1. { 4 x + 2 y + 3 z = 0 3 x − y + 2 z = 0 x + 2 y − z = 0 { 4 x + 2 y + 3 z = 0 3 x − y + 2 z = 0 x = z − 2 y { 4 x + 2 y + 3 z = 0 3 x − y + 2 z = 0 x = z − 2 y { 2 y + 3 z + 4 ( z − 2 y ) = 0 − y + 2 z + 3 ( z − 2 y ) = 0 x = z − 2 y { 7 z − 6 y = 0 5 z − 7 y = 0 x = z − 2 y { y = 7 z 6 5 z − 7 y = 0 x = z − 2 y { y = 7 z 6 − 19 z 6 = 0 x = z − 2 y { y = 7 z 6 z = 0 x = z − 2 y { y = 0 z = 0 x = 0 2. ∣ 4 2 3 3 − 1 2 1 2 − 1 ∣ = = 4 ⋅ ( − 1 ) ⋅ ( − 1 ) + 2 ⋅ 2 ⋅ 1 + 3 ⋅ 2 ⋅ 3 − − 3 ⋅ ( − 1 ) ⋅ 1 − 3 ⋅ 2 ⋅ ( − 1 ) − 2 ⋅ 2 ⋅ 4 = 19 1.\\\begin{cases}4x + 2y + 3z = 0\\
3x - y + 2z = 0\\
x + 2y - z =0 \end{cases}\\\begin{cases}4x + 2y + 3z = 0\\
3x - y + 2z = 0\\
x = z -2y \end{cases}\\\begin{cases}4x + 2y + 3z = 0\\
3x - y + 2z = 0\\
x = z -2y \end{cases}\\\begin{cases} 2y + 3z+4(z -2y) = 0\\
- y + 2z+3(z -2y) = 0\\
x = z -2y \end{cases}\\\begin{cases} 7z -6y = 0\\
5z-7y = 0\\
x = z -2y \end{cases}\\\begin{cases} y = \frac{7z}{6}\\
5z-7y = 0\\
x = z -2y \end{cases}\\\begin{cases} y = \frac{7z}{6}\\
\frac{-19z}{6} = 0\\
x = z -2y \end{cases}\\\begin{cases} y = \frac{7z}{6}\\
z = 0\\
x = z -2y \end{cases}\\\begin{cases} y = 0\\
z = 0\\
x = 0 \end{cases}\\2.\\\begin{vmatrix}
4 & 2 &3\\
3 & -1&2\\1&2&-1
\end{vmatrix}=\\=4\cdot(-1)\cdot(-1)+2\cdot2\cdot1+3\cdot2\cdot3-\\-3\cdot(-1)\cdot1-3\cdot2\cdot(-1)-2\cdot2\cdot4=19 1. ⎩ ⎨ ⎧ 4 x + 2 y + 3 z = 0 3 x − y + 2 z = 0 x + 2 y − z = 0 ⎩ ⎨ ⎧ 4 x + 2 y + 3 z = 0 3 x − y + 2 z = 0 x = z − 2 y ⎩ ⎨ ⎧ 4 x + 2 y + 3 z = 0 3 x − y + 2 z = 0 x = z − 2 y ⎩ ⎨ ⎧ 2 y + 3 z + 4 ( z − 2 y ) = 0 − y + 2 z + 3 ( z − 2 y ) = 0 x = z − 2 y ⎩ ⎨ ⎧ 7 z − 6 y = 0 5 z − 7 y = 0 x = z − 2 y ⎩ ⎨ ⎧ y = 6 7 z 5 z − 7 y = 0 x = z − 2 y ⎩ ⎨ ⎧ y = 6 7 z 6 − 19 z = 0 x = z − 2 y ⎩ ⎨ ⎧ y = 6 7 z z = 0 x = z − 2 y ⎩ ⎨ ⎧ y = 0 z = 0 x = 0 2. ∣ ∣ 4 3 1 2 − 1 2 3 2 − 1 ∣ ∣ = = 4 ⋅ ( − 1 ) ⋅ ( − 1 ) + 2 ⋅ 2 ⋅ 1 + 3 ⋅ 2 ⋅ 3 − − 3 ⋅ ( − 1 ) ⋅ 1 − 3 ⋅ 2 ⋅ ( − 1 ) − 2 ⋅ 2 ⋅ 4 = 19
Comments