"1.\\\\\\begin{cases}4x + 2y + 3z = 0\\\\\n3x - y + 2z = 0\\\\\nx + 2y - z =0 \\end{cases}\\\\\\begin{cases}4x + 2y + 3z = 0\\\\\n3x - y + 2z = 0\\\\\nx = z -2y \\end{cases}\\\\\\begin{cases}4x + 2y + 3z = 0\\\\\n3x - y + 2z = 0\\\\\nx = z -2y \\end{cases}\\\\\\begin{cases} 2y + 3z+4(z -2y) = 0\\\\\n - y + 2z+3(z -2y) = 0\\\\\nx = z -2y \\end{cases}\\\\\\begin{cases} 7z -6y = 0\\\\\n 5z-7y = 0\\\\\nx = z -2y \\end{cases}\\\\\\begin{cases} y = \\frac{7z}{6}\\\\\n 5z-7y = 0\\\\\nx = z -2y \\end{cases}\\\\\\begin{cases} y = \\frac{7z}{6}\\\\\n \\frac{-19z}{6} = 0\\\\\nx = z -2y \\end{cases}\\\\\\begin{cases} y = \\frac{7z}{6}\\\\\n z = 0\\\\\nx = z -2y \\end{cases}\\\\\\begin{cases} y = 0\\\\\n z = 0\\\\\nx = 0 \\end{cases}\\\\2.\\\\\\begin{vmatrix}\n 4 & 2 &3\\\\\n 3 & -1&2\\\\1&2&-1\n\\end{vmatrix}=\\\\=4\\cdot(-1)\\cdot(-1)+2\\cdot2\\cdot1+3\\cdot2\\cdot3-\\\\-3\\cdot(-1)\\cdot1-3\\cdot2\\cdot(-1)-2\\cdot2\\cdot4=19"
Comments
Leave a comment