Answer to Question #134282 in Linear Algebra for Aidon

Question #134282

Suppose C is a 3 x 3 matrix such that det (C) = 4 . Find det (C +C)


1
Expert's answer
2020-09-21T16:19:33-0400

Let's consider C is a matrix given by

[abcdefghi]\begin{bmatrix} a & b&c \\ d&e&f\\ g&h&i \end{bmatrix}

them determinant of matrix C can be written as


abcdefghi=4.........(1)\begin{vmatrix} a & b&c \\ d&e&f\\ g&h&i \end{vmatrix}=4.........(1)


Now,

det(C+C)=abcdefghi+abcdefghi=det(C+C)=\begin{vmatrix} a & b&c \\ d&e&f\\ g&h&i \end{vmatrix}+\begin{vmatrix} a & b&c \\ d&e&f\\ g&h&i \end{vmatrix}=


=2a2b2c2d2e2f2g2h2i=2×2×2×abcdefghi==\begin{vmatrix} 2a & 2b&2c \\ 2 d&2e&2f\\ 2g&2h&2i \end{vmatrix}=2\times2\times2\times\begin{vmatrix} a & b&c \\ d&e&f\\ g&h&i \end{vmatrix}=


=8×4 =8\times4\space from eq.(1)==

=32=32

Answer:

det(C+C)=32det(C+C)=32


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment