Suppose C is a 3 x 3 matrix such that det (C) = 4 . Find det (C +C)
Let's consider C is a matrix given by
[abcdefghi]\begin{bmatrix} a & b&c \\ d&e&f\\ g&h&i \end{bmatrix}⎣⎡adgbehcfi⎦⎤
them determinant of matrix C can be written as
∣abcdefghi∣=4.........(1)\begin{vmatrix} a & b&c \\ d&e&f\\ g&h&i \end{vmatrix}=4.........(1)∣∣adgbehcfi∣∣=4.........(1)
Now,
det(C+C)=∣abcdefghi∣+∣abcdefghi∣=det(C+C)=\begin{vmatrix} a & b&c \\ d&e&f\\ g&h&i \end{vmatrix}+\begin{vmatrix} a & b&c \\ d&e&f\\ g&h&i \end{vmatrix}=det(C+C)=∣∣adgbehcfi∣∣+∣∣adgbehcfi∣∣=
=∣2a2b2c2d2e2f2g2h2i∣=2×2×2×∣abcdefghi∣==\begin{vmatrix} 2a & 2b&2c \\ 2 d&2e&2f\\ 2g&2h&2i \end{vmatrix}=2\times2\times2\times\begin{vmatrix} a & b&c \\ d&e&f\\ g&h&i \end{vmatrix}==∣∣2a2d2g2b2e2h2c2f2i∣∣=2×2×2×∣∣adgbehcfi∣∣=
=8×4 =8\times4\space=8×4 from eq.(1)===
=32=32=32
Answer:
det(C+C)=32det(C+C)=32det(C+C)=32
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments