A: ⎣⎡adgbehcfi⎦⎤
B: ⎣⎡adg+2abeh+2bcfi+2c⎦⎤
det(A)=det(B)
a∗det([ehfi])−b∗det([dgfi])+c∗det([dgeh])=a∗det([eh+2bfi+2c])−b∗det([dg+2afi+2c])+c∗det([dg+2aeh+2b])
a(ei−fh)−b(di−fg)+c(dh−eg)=a(e(i+2c)−f(h+2b))−b(d(i+2c)−f(g+2a))+c(d(h+2b)−e(g+2a))
aei−afh−bdi+bfg+cdh−ecg=bfg−afh+eai−bdi−ecg+cdh
0=0
Proved.
Comments
Leave a comment