Answer to Question #130471 in Linear Algebra for Evans Malepe

Question #130471

Suppose A and B are 3 × 3 matrices. Show that If B is obtained from A by adding 2 times the first row of A to the last row of A, then

det (A) = det (B)


1
Expert's answer
2020-08-25T10:40:24-0400

A: [abcdefghi]\begin{bmatrix} a & b & c\\ d & e & f\\ g & h & i \end{bmatrix}


B: [abcdefg+2ah+2bi+2c]\begin{bmatrix} a & b & c\\ d & e & f\\ g+2a & h+2b & i+2c \end{bmatrix}


det(A)=det(B)det(A)=det(B)


adet([efhi])bdet([dfgi])+cdet([degh])=adet([efh+2bi+2c])bdet([dfg+2ai+2c])+cdet([deg+2ah+2b])a*det(\begin{bmatrix} e & f \\ h & i \end{bmatrix})-b*det(\begin{bmatrix} d & f \\ g & i \end{bmatrix})+c*det(\begin{bmatrix} d & e \\ g & h \end{bmatrix})=a*det(\begin{bmatrix} e & f \\ h+2b & i+2c \end{bmatrix})-b*det(\begin{bmatrix} d & f \\ g+2a & i+2c \end{bmatrix})+c*det(\begin{bmatrix} d & e \\ g+2a & h+2b \end{bmatrix})

a(eifh)b(difg)+c(dheg)=a(e(i+2c)f(h+2b))b(d(i+2c)f(g+2a))+c(d(h+2b)e(g+2a))a(ei-fh)-b(di-fg)+c(dh-eg)=a(e(i+2c)-f(h+2b))-b(d(i+2c)-f(g+2a))+c(d(h+2b)-e(g+2a))


aeiafhbdi+bfg+cdhecg=bfgafh+eaibdiecg+cdhaei-afh-bdi+bfg+cdh-ecg=bfg-afh+eai-bdi-ecg+cdh


0=00=0


Proved.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment