A = "\\begin{bmatrix}\n 0 & 2 & 3 & -4 & 1 \\\\\n 0 & 0 & 2 & 3 & 4 \\\\\n 2 & 2 & -5 & 2 & 4 \\\\\n 2 & 0 & -6 & 9 & 7 \\\\\n\\end{bmatrix}"
Since element at row 1 and column 1 (pivot element) equals 0, we need to swap rows
Then find the first non zero element in the column 1 under the pivot entry
The first non zero element is row 3
Swap rows 1 and 3: "\\begin{bmatrix}\n 2 & 2 & -5 & 2 & 4 \\\\\n 0 & 0 & 2 & 3 & 4 \\\\\n 0 & 2 & 3 & -4 & 1 \\\\\n 2 & 0 & -6 & 9 & 7 \\\\\n\\end{bmatrix}"
make zeros in column 1 except the at entry row 1, column 1 (pivot entry)
Subtract row 1 from row 4
[R4= R4 - R1]; "\\begin{bmatrix}\n 2 & 2 & -5 & 2 & 4 \\\\\n 0 & 0 & 2 & 3 & 4 \\\\\n 0 & 2 & 3 & -4 & 1 \\\\\n 0 & -2 & -1 & 7 & 3 \\\\\n\\end{bmatrix}"
Divide row 1 by 2
[R1 = R1/2] "\\begin{bmatrix}\n 1 & 1 & -5\/2 & 1 & 2 \\\\\n 0 & 0 & 2 & 3 & 4 \\\\\n 0 & 2 & 3 & -4 & 1 \\\\\n 0 & -2 & -1 & 7 & 3 \\\\\n\\end{bmatrix}"
Since element at row 2 and column 2 (pivot element) equals 0, we need to swap rows
Then find the first non zero element in the column 2 under the pivot entry
The first non zero element is row 3
swap rows 2 with 3; "\\begin{bmatrix}\n 1 & 1 & -5\/2 & 1 & 2 \\\\\n 0 & 2 & 3 & -4 & 1 \\\\\n 0 & 0 & 2 & 3 & 4 \\\\\n 0 & -2 & -1 & 7 & 3 \\\\\n\\end{bmatrix}"
Make zeros in column 2 except the at entry row 2, column 2 (pivot entry).
Add row 2 to row 4
[R2 =R4 + R2]; "\\begin{bmatrix}\n 1 & 1 & -5\/2 & 1 & 2 \\\\\n 0 & 2 & 3 & -4 & 1 \\\\\n 0 & 0 & 2 & 3 & 4 \\\\\n 0 & 0 & 2 & 3 & 4 \\\\\n\\end{bmatrix}"
Divide row 2 by 2
[R2 = R2/2]; "\\begin{bmatrix}\n 1 & 1 & -5\/2 & 1 & 2 \\\\\n 0 & 1 & 3\/2 & -2 & 1\/2 \\\\\n 0 & 0 & 2 & 3 & 4 \\\\\n 0 & 0 & 2 & 3 & 4 \\\\\n\\end{bmatrix}"
Subtract row 2 from row 1
[R1 = R1 - R2]; "\\begin{bmatrix}\n 1 & 0 & -4 & 3 & 3\/2 \\\\\n 0 & 1 & 3\/2 & -2 & 1\/2 \\\\\n 0 & 0 & 2 & 3 & 4 \\\\\n 0 & 0 & 2 & 3 & 4 \\\\\n\\end{bmatrix}"
Make zeros in column 3 except the at entry row 3, column 3 (pivot entry).
Add row 3 multiplied by 2 to row 1.
[R3 = R1 + (2)R3]; "\\begin{bmatrix}\n 1 & 0 & 0 & 9 & 19\/2 \\\\\n 0 & 1 & 3\/2 & -2 & 1\/2 \\\\\n 0 & 0 & 2 & 3 & 4 \\\\\n 0 & 0 & 2 & 3 & 4 \\\\\n\\end{bmatrix}"
Subtract row 3 from row 4
[R4 = R4 - R3]; "\\begin{bmatrix}\n 1 & 0 & 0 & 9 & 19\/2 \\\\\n 0 & 1 & 3\/2 & -2 & 1\/2 \\\\\n 0 & 0 & 2 & 3 & 4 \\\\\n 0 & 0 & 0 & 0 & 0 \\\\\n\\end{bmatrix}"
Divide row 3 by 2
[R3 = R3/2]; "\\begin{bmatrix}\n 1 & 0 & 0 & 9 & 19\/2 \\\\\n 0 & 1 & 3\/2 & -2 & 1\/2 \\\\\n 0 & 0 & 1 & 3\/2 & 2 \\\\\n 0 & 0 & 0 & 0 & 0 \\\\\n\\end{bmatrix}"
Subtract row 3 multiplied by 3/2 to row 2.
[R2 = R2 - (3/2)R3]; "\\begin{bmatrix}\n 1 & 0 & 0 & 9 & 19\/2 \\\\\n 0 & 1 & 0 & -17\/4 & -5\/2 \\\\\n 0 & 0 & 1 & 3\/2 & 2 \\\\\n 0 & 0 & 0 & 0 & 0 \\\\\n\\end{bmatrix}"
SINCE ALL ROWS BELOW ARE ZERO THEN THE ANSWER IS,
rref(A)
= "\\begin{bmatrix}\n 1 & 0 & 0 & 9 & 19\/2 \\\\\n 0 & 1 & 0 & -17\/4 & -5\/2 \\\\\n 0 & 0 & 1 & 3\/2 & 2 \\\\\n 0 & 0 & 0 & 0 & 0 \\\\\n\\end{bmatrix}\n\n\u200b"
or in decimal form
= "\\begin{bmatrix}\n 1 & 0 & 0 & 9 & 9.5 \\\\\n 0 & 1 & 0 & -4.25 & -2.5 \\\\\n 0 & 0 & 1 & 1.5 & 2 \\\\\n 0 & 0 & 0 & 0 & 0 \\\\\n\\end{bmatrix}"
The rank is = 3
Comments
Leave a comment