Question #127665
Show that C^n is a complex vector space
1
Expert's answer
2020-07-28T18:52:10-0400

We have to show that Cn\mathbb{C}^n is a complex vector space.


According to Wikipedia's definition of the vector space we can conclude that:

A vector space over a field F\mathbb{F} - is a set VV together with two operations:

  • vector addition ( ++ ) : V+VVV + V \mapsto V - takes any two vectors vv and ww and assigns to them a third vector which is commonly written as v+wv + w, and called the sum of these two vectors. ( The resultant vector is also an element of the set VV )
  • scalar multiplication ( \cdot ) : FVV\mathbb{F} \cdot V \mapsto V - takes any scalar α\alpha and any vector υ\upsilon and gives another vector αv\alpha \cdot v. ( Similarly, the vector αv\alpha \cdot v is an element of the set VV ) ( Scalar multiplication is a multiplication of a vector by a scalar )

that satisfy the eight axioms listed below ( considering that u,v,wu, v, w are arbitrary vectors in VV, and α,β\alpha, \beta scalars in F\mathbb{F} ):

  1. associativity of addition : u+(v+w)=(u+v)+wu + (v + w) = (u + v) + w
  2. commutativity of addition : u+v=v+uu + v = v + u
  3. identity element of addition ( there exists an element 0V0 \in V, called the zero vector, such that v+0=vv + 0 = v for all vVv \in V )
  4. inverse element of addition ( for every vVv \in V, there exists an element vV-v \in V , called the additive inverse of vv , such that v+(v)=0v + (-v) = 0 )
  5. associativity of multiplication : α(βv)=(αβ)v\alpha \cdot (\beta \cdot v) = (\alpha \cdot \beta) \cdot v
  6. identity element of scalar multiplication : 1v=v1 \cdot v = v ( where 11 denotes the multiplicative identity in F\mathbb{F} )
  7. distributivity ( of scalar multiplication with respect to vector addition ) : α(u+v)=αu+αv\alpha \cdot (u + v) = \alpha \cdot u + \alpha \cdot v
  8. distributivity ( of scalar multiplication with respect to field addition ) : (α+β)v=αv+βv(\alpha + \beta) \cdot v = \alpha \cdot v + \beta \cdot v


Elements of VV are commonly called vectors. Elements of F\mathbb{F} are commonly called scalars.


So, if we prove this 2 operation properties and 8 axioms for our Cn\mathbb{C}^n we will prove that it is a complex vector space.


VECTOR ADDITION

Let's consider C1\mathbb{C}^1 case:

Taking 2 elements from C1\mathbb{C}^1-space: u=a+ibC1u = a+ib \in \mathbb{C}^1 , and v=c+idC1v = c+id \in \mathbb{C}^1 , we can write: u+v=a+ib+c+id=(a+b)+i(c+d)=tC1.u + v = a+ib + c+id = (a+b) + i(c+d) = t \in \mathbb{C}^1.

Now consider Cn\mathbb{C}^n case:

Taking 2 elements from Cn\mathbb{C}^n-space: u=(a1+ib1,a2+ib2,,an+ibn)Cnu = (a_1+ib_1, a_2+ib_2, \ldots, a_n+ib_n) \in \mathbb{C}^n , and v=(c1+id1,c2+id2,,cn+idn)Cnv = (c_1+id_1, c_2+id_2, \ldots, c_n+id_n) \in \mathbb{C}^n , we can write: u+v=(a1+ib1,a2+ib2,,an+ibn)+(c1+id1,c2+id2,,cn+idn)=((a1+b1)+i(c1+d1),(a2+b2)+i(c2+d2),,(an+bn)+i(cn+dn))=tCn.u + v = (a_1+ib_1, a_2+ib_2, \ldots, a_n+ib_n) + (c_1+id_1, c_2+id_2, \ldots, c_n+id_n) = \newline ((a_1+b_1) + i(c_1+d_1), (a_2+b_2) + i(c_2+d_2), \ldots, (a_n+b_n) + i(c_n+d_n)) = t \in \mathbb{C}^n.

\square


SCALAR MULTIPLICATION

The same way, let's consider C1\mathbb{C}^1 case:

Taking element from C1\mathbb{C}^1-space: u=a+ibC1u = a+ib \in \mathbb{C}^1 , and a scalar αR\alpha \in \mathbb{R} , we can write: αu=α(a+ib)=αa+iαb=tC1.\alpha \cdot u = \alpha \cdot (a+ib) = \alpha \cdot a + i \alpha \cdot b = t \in \mathbb{C}^1.

Now consider Cn\mathbb{C}^n case:

Taking element from Cn\mathbb{C}^n-space: u=(a1+ib1,a2+ib2,,an+ibn)Cnu = (a_1+ib_1, a_2+ib_2, \ldots, a_n+ib_n) \in \mathbb{C}^n , and a scalar αR\alpha \in \mathbb{R} , we can write:

αu=α(a1+ib1,a2+ib2,,an+ibn)=(α(a1+ib1),α(a2+ib2),,α(an+ibn))=(αa1+iαb1,αa2+iαb2,,αan+iαbn)=tCn.\alpha \cdot u = \alpha \cdot (a_1+ib_1, a_2+ib_2, \ldots, a_n+ib_n) = \newline (\alpha \cdot (a_1+ib_1), \alpha \cdot (a_2+ib_2), \ldots, \alpha \cdot (a_n+ib_n) ) = \newline (\alpha \cdot a_1 + i \alpha \cdot b_1, \alpha \cdot a_2 + i \alpha \cdot b_2, \ldots, \alpha \cdot a_n + i \alpha \cdot b_n)= t \in \mathbb{C}^n.

\square


1) ASSOCIATIVITY OF ADDITION

Let's take 3 elements u,v,wu, v, w from Cn\mathbb{C}^n -space: u=(a1+ib1,,an+ibn)u = (a_1+ib_1, \ldots, a_n+ib_n), v=(c1+id1,,cn+idn)v = (c_1+id_1, \ldots, c_n+id_n), and w=(f1+ig1,,fn+ign)w = (f_1+ig_1, \ldots, f_n+ig_n), and show that u+(v+w)=(u+v)+w.u + (v + w) = (u + v) + w.

u+(v+w)=(a1+ib1,,an+ibn)+((c1+id1,,cn+idn)+(f1+ig1,,fn+ign))=(a1+ib1,,an+ibn)+((c1+f1)+i(d1+g1),,(cn+fn)+i(dn+gn))=((a1+c1+f1)+i(b1+d1+g1),,(an+cn+fn)+i(bn+dn+gn))=((a1+c1)+i(b1+d1),,(an+cn)+i(bn+dn))+(f1+ig1,,fn+ign)=((a1+ib1,,an+ibn)+(c1+id1,,cn+idn))+(f1+ig1,,fn+ign)=(u+v)+w.u + (v + w) = \newline (a_1+ib_1, \ldots, a_n+ib_n) + \Big( (c_1+id_1, \ldots, c_n+id_n) + (f_1+ig_1, \ldots, f_n+ig_n) \Big) = (a_1+ib_1, \ldots, a_n+ib_n) + \Big( (c_1+f_1)+i(d_1+g_1), \ldots, (c_n+f_n)+i(d_n+g_n)\Big) = \newline \Big( (a_1+c_1+f_1)+i(b_1+d_1+g_1), \ldots, (a_n+c_n+f_n)+i(b_n+d_n+g_n)\Big) = \newline \Big( (a_1+c_1)+i(b_1+d_1), \ldots, (a_n+c_n)+i(b_n+d_n)\Big) + (f_1+ig_1, \ldots, f_n+ig_n) = \newline \Big( (a_1+ib_1, \ldots, a_n+ib_n) + (c_1+id_1, \ldots, c_n+id_n) \Big) + (f_1+ig_1, \ldots, f_n+ig_n) = \newline (u + v) + w.

\square


2) COMMUTATIVITY OF ADDITION

Let's take 2 elements u,vu, v from Cn\mathbb{C}^n-space: u=(a1+ib1,,an+ibn)u = (a_1+ib_1, \ldots, a_n+ib_n), and v=(c1+id1,,cn+idn)v = (c_1+id_1, \ldots, c_n+id_n), and show that u+v=v+u.u + v = v + u.

u+v=(a1+ib1,,an+ibn)+(c1+id1,,cn+idn)=((a1+c1)+i(b1+d1),,(an+cn)+i(bn+dn))=((c1+a1)+i(d1+b1),,(cn+an)+i(dn+bn))=(c1+id1,,cn+idn)+(a1+ib1,,an+ibn)=v+u.u + v = (a_1+ib_1, \ldots, a_n+ib_n) + (c_1+id_1, \ldots, c_n+id_n) = \newline \Big( (a_1+c_1)+i(b_1+d_1), \ldots, (a_n+c_n)+i(b_n+d_n)\Big) = \newline \Big( (c_1+a_1)+i(d_1+b_1), \ldots, (c_n+a_n)+i(d_n+b_n)\Big) = \newline (c_1+id_1, \ldots, c_n+id_n) + (a_1+ib_1, \ldots, a_n+ib_n) = v + u.

\square


3) IDENTITY ELEMENT OF ADDITION

There exist 0=(01,02,,0n)Cn0 = (0_1, 0_2, \ldots, 0_n) \in \mathbb{C}^n, such that using VECTOR ADDITION property (proven above) we can write v+0=v,vV.v + 0 = v, \forall v \in V.

\square


4) INVERSE ELEMENT OF ADDITION

For every v=(c1+id1,,cn+idn)Vv = (c_1+id_1, \ldots, c_n+id_n) \in V, there exist element v=(c1id1,,cnidn)-v = (-c_1-id_1, \ldots, -c_n-id_n), such that v+(v)=0v + (-v) = 0 (according to VECTOR ADDITION property).

\square


5) ASSOCIATIVITY OF MULTIPLICATION

For any v=(c1+id1,,cn+idn)Vv = (c_1+id_1, \ldots, c_n+id_n) \in V, and 2 scalars α\alpha and β\beta, let's prove that: α(βv)=(αβ)v\alpha \cdot (\beta \cdot v) = (\alpha \cdot \beta) \cdot v

α(βv)=α(β(c1+id1,,cn+idn))=α(βc1+iβd1,,βcn+iβdn)=(αβc1+iαβd1,,αβcn+iαβdn)=((αβ)c1+(αβ)id1,,(αβ)cn+(αβ)idn)=.(αβ)(c1+id1,,cn+idn)=(αβ)v\alpha \cdot (\beta \cdot v) = \alpha \cdot \Big(\beta \cdot (c_1+id_1, \ldots, c_n+id_n)\Big) = \newline \alpha \cdot \Big(\beta \cdot c_1+i\beta \cdot d_1, \ldots, \beta \cdot c_n+i\beta \cdot d_n\Big) = \newline \Big(\alpha \cdot \beta \cdot c_1+i\alpha \cdot \beta \cdot d_1, \ldots, \alpha \cdot \beta \cdot c_n+i\alpha \cdot \beta \cdot d_n\Big) = \newline \Big( (\alpha \cdot \beta) \cdot c_1+(\alpha \cdot \beta) \cdot id_1, \ldots, (\alpha \cdot \beta) \cdot c_n+(\alpha \cdot \beta) \cdot id_n \Big) = \newline. (\alpha \cdot \beta) \cdot (c_1+id_1, \ldots, c_n+id_n) = (\alpha \cdot \beta) \cdot v

\square


6) IDENTITY ELEMENT OF SCALAR MULTIPLICATION

There exist 1=(11,12,,1n)Cn1 = (1_1, 1_2, \ldots, 1_n) \in \mathbb{C}^n, such that using VECTOR ADDITION property (proven above) we can write 1v=v,vV.1 \cdot v = v, \forall v \in V.

\square


7) DISTRIBUTIVITY ( OF SCALAR MULTIPLICATION WITH RESPECT TO VECTOR ADDITION )

For any 2 elements u,vu, v from Cn\mathbb{C}^n-space: u=(a1+ib1,,an+ibn)u = (a_1+ib_1, \ldots, a_n+ib_n), v=(c1+id1,,cn+idn)v = (c_1+id_1, \ldots, c_n+id_n) and a scalar α\alpha let's prove, that α(u+v)=αu+αv\alpha \cdot (u + v) = \alpha \cdot u + \alpha \cdot v.

α(u+v)=α((a1+ib1,,an+ibn)+(c1+id1,,cn+idn))=α((a1+c1)+i(b1+d1),,(an+cn)+i(bn+dn))=(α(a1+c1)+iα(b1+d1),,α(an+cn)+iα(bn+dn))=((αa1+αc1)+i(αb1+αd1),,αan+αcn)+i(αbn+αdn))=((αa1)+i(αb1),,αan+i(αbn))+((αc1)+i(αd1),,αbn+i(αdn))=α(a1+ib1,,an+ibn)+α(c1+id1,,cn+idn)=αu+αv.\alpha \cdot (u + v) = \alpha \cdot \Big( (a_1+ib_1, \ldots, a_n+ib_n) + (c_1+id_1, \ldots, c_n+id_n) \Big) = \newline \alpha \cdot \Big( (a_1+c_1)+i(b_1+d_1), \ldots, (a_n+c_n)+i(b_n+d_n)\Big) = \newline \Big( \alpha \cdot (a_1+c_1)+i\alpha \cdot (b_1+d_1), \ldots, \alpha \cdot (a_n+c_n)+i\alpha \cdot (b_n+d_n)\Big) = \newline \Big( (\alpha \cdot a_1+\alpha \cdot c_1)+i(\alpha \cdot b_1+\alpha \cdot d_1), \ldots, \alpha \cdot a_n+\alpha \cdot c_n)+i(\alpha \cdot b_n+\alpha \cdot d_n) \Big) = \newline \Big( (\alpha \cdot a_1)+i(\alpha \cdot b_1), \ldots, \alpha \cdot a_n+i(\alpha \cdot b_n) \Big) + \newline \Big( (\alpha \cdot c_1)+i(\alpha \cdot d_1), \ldots, \alpha \cdot b_n+i(\alpha \cdot d_n) \Big) = \newline \alpha \cdot (a_1+ib_1, \ldots, a_n+ib_n) + \alpha \cdot (c_1+id_1, \ldots, c_n+id_n) = \alpha \cdot u + \alpha \cdot v.

\square


8) DISTRIBUTIVITY ( OF SCALAR MULTIPLICATION WITH RESPECT TO FIELD ADDITION )

For any element v=(c1+id1,,cn+idn)Vv = (c_1+id_1, \ldots, c_n+id_n) \in V, and 2 scalars α\alpha and β\beta let's prove that: (α+β)v=αv+βv.(\alpha + \beta) \cdot v = \alpha \cdot v + \beta \cdot v.

(α+β)v=(α+β)(c1+id1,,cn+idn)=((α+β)(c1+id1),,(α+β)(cn+idn))=(α(c1+id1)+β(c1+id1),,α(cn+idn)+β(cn+idn))=(α(c1+id1),,α(cn+idn))+(β(c1+id1),,β(cn+idn))=α(c1+id1,,cn+idn)+β(c1+id1,,cn+idn)=αv+βv.(\alpha + \beta) \cdot v = (\alpha + \beta) \cdot (c_1+id_1, \ldots, c_n+id_n) = \newline \Big( (\alpha + \beta) \cdot (c_1+id_1), \ldots, (\alpha + \beta) \cdot (c_n+id_n) \Big) = \newline \Big( \alpha \cdot (c_1+id_1) + \beta \cdot (c_1+id_1), \ldots, \alpha \cdot (c_n+id_n) + \beta \cdot (c_n+id_n) \Big) = \newline \Big( \alpha \cdot (c_1+id_1), \ldots, \alpha \cdot (c_n+id_n) \Big) + \Big( \beta \cdot (c_1+id_1), \ldots, \beta \cdot (c_n+id_n) \Big) = \newline \alpha \cdot (c_1+id_1, \ldots, c_n+id_n) + \beta \cdot (c_1+id_1, \ldots, c_n+id_n) = \alpha \cdot v + \beta \cdot v.

\square


\blacksquare


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS