We have to show that Cn is a complex vector space.
According to Wikipedia's definition of the vector space we can conclude that:
A vector space over a field F - is a set V together with two operations:
- vector addition ( + ) : V+V↦V - takes any two vectors v and w and assigns to them a third vector which is commonly written as v+w, and called the sum of these two vectors. ( The resultant vector is also an element of the set V )
- scalar multiplication ( ⋅ ) : F⋅V↦V - takes any scalar α and any vector υ and gives another vector α⋅v. ( Similarly, the vector α⋅v is an element of the set V ) ( Scalar multiplication is a multiplication of a vector by a scalar )
that satisfy the eight axioms listed below ( considering that u,v,w are arbitrary vectors in V, and α,β scalars in F ):
- associativity of addition : u+(v+w)=(u+v)+w
- commutativity of addition : u+v=v+u
- identity element of addition ( there exists an element 0∈V, called the zero vector, such that v+0=v for all v∈V )
- inverse element of addition ( for every v∈V, there exists an element −v∈V , called the additive inverse of v , such that v+(−v)=0 )
- associativity of multiplication : α⋅(β⋅v)=(α⋅β)⋅v
- identity element of scalar multiplication : 1⋅v=v ( where 1 denotes the multiplicative identity in F )
- distributivity ( of scalar multiplication with respect to vector addition ) : α⋅(u+v)=α⋅u+α⋅v
- distributivity ( of scalar multiplication with respect to field addition ) : (α+β)⋅v=α⋅v+β⋅v
Elements of V are commonly called vectors. Elements of F are commonly called scalars.
So, if we prove this 2 operation properties and 8 axioms for our Cn we will prove that it is a complex vector space.
VECTOR ADDITION
Let's consider C1 case:
Taking 2 elements from C1-space: u=a+ib∈C1 , and v=c+id∈C1 , we can write: u+v=a+ib+c+id=(a+b)+i(c+d)=t∈C1.
Now consider Cn case:
Taking 2 elements from Cn-space: u=(a1+ib1,a2+ib2,…,an+ibn)∈Cn , and v=(c1+id1,c2+id2,…,cn+idn)∈Cn , we can write: u+v=(a1+ib1,a2+ib2,…,an+ibn)+(c1+id1,c2+id2,…,cn+idn)=((a1+b1)+i(c1+d1),(a2+b2)+i(c2+d2),…,(an+bn)+i(cn+dn))=t∈Cn.
□
SCALAR MULTIPLICATION
The same way, let's consider C1 case:
Taking element from C1-space: u=a+ib∈C1 , and a scalar α∈R , we can write: α⋅u=α⋅(a+ib)=α⋅a+iα⋅b=t∈C1.
Now consider Cn case:
Taking element from Cn-space: u=(a1+ib1,a2+ib2,…,an+ibn)∈Cn , and a scalar α∈R , we can write:
α⋅u=α⋅(a1+ib1,a2+ib2,…,an+ibn)=(α⋅(a1+ib1),α⋅(a2+ib2),…,α⋅(an+ibn))=(α⋅a1+iα⋅b1,α⋅a2+iα⋅b2,…,α⋅an+iα⋅bn)=t∈Cn.
□
1) ASSOCIATIVITY OF ADDITION
Let's take 3 elements u,v,w from Cn -space: u=(a1+ib1,…,an+ibn), v=(c1+id1,…,cn+idn), and w=(f1+ig1,…,fn+ign), and show that u+(v+w)=(u+v)+w.
u+(v+w)=(a1+ib1,…,an+ibn)+((c1+id1,…,cn+idn)+(f1+ig1,…,fn+ign))=(a1+ib1,…,an+ibn)+((c1+f1)+i(d1+g1),…,(cn+fn)+i(dn+gn))=((a1+c1+f1)+i(b1+d1+g1),…,(an+cn+fn)+i(bn+dn+gn))=((a1+c1)+i(b1+d1),…,(an+cn)+i(bn+dn))+(f1+ig1,…,fn+ign)=((a1+ib1,…,an+ibn)+(c1+id1,…,cn+idn))+(f1+ig1,…,fn+ign)=(u+v)+w.
□
2) COMMUTATIVITY OF ADDITION
Let's take 2 elements u,v from Cn-space: u=(a1+ib1,…,an+ibn), and v=(c1+id1,…,cn+idn), and show that u+v=v+u.
u+v=(a1+ib1,…,an+ibn)+(c1+id1,…,cn+idn)=((a1+c1)+i(b1+d1),…,(an+cn)+i(bn+dn))=((c1+a1)+i(d1+b1),…,(cn+an)+i(dn+bn))=(c1+id1,…,cn+idn)+(a1+ib1,…,an+ibn)=v+u.
□
3) IDENTITY ELEMENT OF ADDITION
There exist 0=(01,02,…,0n)∈Cn, such that using VECTOR ADDITION property (proven above) we can write v+0=v,∀v∈V.
□
4) INVERSE ELEMENT OF ADDITION
For every v=(c1+id1,…,cn+idn)∈V, there exist element −v=(−c1−id1,…,−cn−idn), such that v+(−v)=0 (according to VECTOR ADDITION property).
□
5) ASSOCIATIVITY OF MULTIPLICATION
For any v=(c1+id1,…,cn+idn)∈V, and 2 scalars α and β, let's prove that: α⋅(β⋅v)=(α⋅β)⋅v
α⋅(β⋅v)=α⋅(β⋅(c1+id1,…,cn+idn))=α⋅(β⋅c1+iβ⋅d1,…,β⋅cn+iβ⋅dn)=(α⋅β⋅c1+iα⋅β⋅d1,…,α⋅β⋅cn+iα⋅β⋅dn)=((α⋅β)⋅c1+(α⋅β)⋅id1,…,(α⋅β)⋅cn+(α⋅β)⋅idn)=.(α⋅β)⋅(c1+id1,…,cn+idn)=(α⋅β)⋅v
□
6) IDENTITY ELEMENT OF SCALAR MULTIPLICATION
There exist 1=(11,12,…,1n)∈Cn, such that using VECTOR ADDITION property (proven above) we can write 1⋅v=v,∀v∈V.
□
7) DISTRIBUTIVITY ( OF SCALAR MULTIPLICATION WITH RESPECT TO VECTOR ADDITION )
For any 2 elements u,v from Cn-space: u=(a1+ib1,…,an+ibn), v=(c1+id1,…,cn+idn) and a scalar α let's prove, that α⋅(u+v)=α⋅u+α⋅v.
α⋅(u+v)=α⋅((a1+ib1,…,an+ibn)+(c1+id1,…,cn+idn))=α⋅((a1+c1)+i(b1+d1),…,(an+cn)+i(bn+dn))=(α⋅(a1+c1)+iα⋅(b1+d1),…,α⋅(an+cn)+iα⋅(bn+dn))=((α⋅a1+α⋅c1)+i(α⋅b1+α⋅d1),…,α⋅an+α⋅cn)+i(α⋅bn+α⋅dn))=((α⋅a1)+i(α⋅b1),…,α⋅an+i(α⋅bn))+((α⋅c1)+i(α⋅d1),…,α⋅bn+i(α⋅dn))=α⋅(a1+ib1,…,an+ibn)+α⋅(c1+id1,…,cn+idn)=α⋅u+α⋅v.
□
8) DISTRIBUTIVITY ( OF SCALAR MULTIPLICATION WITH RESPECT TO FIELD ADDITION )
For any element v=(c1+id1,…,cn+idn)∈V, and 2 scalars α and β let's prove that: (α+β)⋅v=α⋅v+β⋅v.
(α+β)⋅v=(α+β)⋅(c1+id1,…,cn+idn)=((α+β)⋅(c1+id1),…,(α+β)⋅(cn+idn))=(α⋅(c1+id1)+β⋅(c1+id1),…,α⋅(cn+idn)+β⋅(cn+idn))=(α⋅(c1+id1),…,α⋅(cn+idn))+(β⋅(c1+id1),…,β⋅(cn+idn))=α⋅(c1+id1,…,cn+idn)+β⋅(c1+id1,…,cn+idn)=α⋅v+β⋅v.
□
■
Comments