Question #133006

(1) Let;

  • A=the first row [-1 -1] second row [3 3]. Find all 2×2 materices, B such that AB=0

(2) Distinguish whether the given matrix is symmetric or not

  • A=the first row [2 1 3] second row [1 5 -3] third row [3 -3 7]
  • B=the first row[1 1 3] second row[1 2 2] third row[3 2 3]
1
Expert's answer
2020-09-14T19:18:05-0400

(1) Given A=[1133].A=\begin{bmatrix} -1 & -1 \\ 3 & 3 \end{bmatrix}. Let B=[b11b12b21b22].B=\begin{bmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{bmatrix}.

Then


AB=[1133][b11b12b21b22]=AB=\begin{bmatrix} -1 & -1 \\ 3 & 3 \end{bmatrix}\begin{bmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{bmatrix}=

=[b11b21b12b223b11+3b213b12+3b22]=\begin{bmatrix} -b_{11}-b_{21} & -b_{12}-b_{22} \\ 3b_{11}+3b_{21} & 3b_{12}+3b_{22} \end{bmatrix}

If AB=0,AB=0, then


b11b21=0b12b22=03b11+3b21=03b12+3b22=0\begin{alignedat}{2} -b_{11}-b_{21}=0 \\ -b_{12}-b_{22}=0 \\ 3b_{11}+3b_{21}=0 \\ 3b_{12}+3b_{22}=0 \end{alignedat}

b21=b11b12=b22\begin{alignedat}{2} b_{21}=-b_{11} \\ b_{12}=-b_{22} \end{alignedat}

B=[cdcd],c,dRB=\begin{bmatrix} c & -d \\ -c & d \end{bmatrix}, c,d\in \R

(2)

A=[213153337]=>AT=[213153337]=AA=\begin{bmatrix} 2 & 1 & 3 \\ 1 & 5 & -3 \\ 3 & -3 & 7 \end{bmatrix}=>A^T=\begin{bmatrix} 2 & 1 & 3 \\ 1 & 5 & -3 \\ 3 & -3 & 7 \end{bmatrix}=A

Then the matrix AA is symmetric.


B=[113122323]=>BT=[113122323]=BB=\begin{bmatrix} 1 & 1 & 3 \\ 1 & 2 & 2 \\ 3 & 2 & 3 \end{bmatrix}=>B^T=\begin{bmatrix} 1 & 1 & 3 \\ 1 & 2 & 2\\ 3 & 2 & 3 \end{bmatrix}=B

Then the matrix BB is symmetric.



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

Assignment Expert
15.09.20, 20:00

All elements of matrices were obtained using rules for matrix operations (the multiplication of matrices in the first part, the transpose of a matrix in the second part). In the first part some equalities were obtained after equating matrix entries of AB to zero, one sets b11=c, b22=d.

Galata
15.09.20, 02:43

How can I get matrix symbols and sign

LATEST TUTORIALS
APPROVED BY CLIENTS