Question #133221
Show necessary step for the following questions
("For the given matrix"
A=the first row [1 -1] second row [3 2]
B=the first row [3 -2] second row [0 1]

1) show that (A^t)^t=A
2) show that (A+B)^t=A^t+B^t
3) show that (4A)^t=4(A^t)
4) show that (AB)^t=A^tB^t)
1
Expert's answer
2020-09-15T17:30:41-0400
A=[1132],B=[3201]A=\begin{bmatrix} 1 & -1 \\ 3 & 2 \end{bmatrix}, B=\begin{bmatrix} 3 & -2 \\ 0 & 1 \end{bmatrix}

1)


AT=[1312]A^T=\begin{bmatrix} 1 & 3 \\ -1 & 2 \end{bmatrix}

(AT)T=[1132]=A(A^T)^T=\begin{bmatrix} 1 & -1 \\ 3 & 2 \end{bmatrix}=A

2)


A+B=[1132]+[3201]=A+B=\begin{bmatrix} 1 & -1 \\ 3 & 2 \end{bmatrix}+\begin{bmatrix} 3 & -2 \\ 0 & 1 \end{bmatrix}=

=[1+3123+02+1]=[4333]=\begin{bmatrix} 1+3 & -1-2 \\ 3+0 & 2+1 \end{bmatrix}=\begin{bmatrix} 4 & -3 \\ 3 & 3 \end{bmatrix}

(A+B)T=[4333](A+B)^T=\begin{bmatrix} 4 & 3 \\ -3 & 3 \end{bmatrix}

AT=[1312],BT=[3021]A^T=\begin{bmatrix} 1 & 3 \\ -1 & 2 \end{bmatrix}, B^T=\begin{bmatrix} 3 & 0 \\ -2 & 1 \end{bmatrix}

AT+BT=[1312]+[3021]=A^T+B^T=\begin{bmatrix} 1 &3 \\ -1 & 2 \end{bmatrix}+\begin{bmatrix} 3 & 0 \\ -2 & 1 \end{bmatrix}=

=[1+33+0122+1]=[4333]=(A+B)T=\begin{bmatrix} 1+3 & 3+0 \\ -1-2 & 2+1 \end{bmatrix}=\begin{bmatrix} 4 & 3\\ -3 & 3 \end{bmatrix}=(A+B)^T

3)


4A=4[1132]=[4(1)4(1)4(3)4(2)]=[44128]4A=4\begin{bmatrix} 1 & -1 \\ 3 & 2 \end{bmatrix}=\begin{bmatrix} 4(1) & 4(-1) \\ 4(3) & 4(2) \end{bmatrix}=\begin{bmatrix} 4 & -4 \\ 12 & 8 \end{bmatrix}

(4A)T=[41248](4A)^T=\begin{bmatrix} 4 & 12 \\ -4 & 8 \end{bmatrix}

AT=[1312]A^T=\begin{bmatrix} 1 & 3 \\ -1 & 2 \end{bmatrix}

4AT=4[1312]=[4(1)4(3)4(1)4(2)]=[41248]4A^T=4\begin{bmatrix} 1 & 3 \\ -1 & 2 \end{bmatrix}=\begin{bmatrix} 4(1) & 4(3) \\ 4(-1) & 4(2) \end{bmatrix}=\begin{bmatrix} 4 & 12\\ -4 & 8 \end{bmatrix}

(4A)T=[41248]=4AT(4A)^T=\begin{bmatrix} 4 & 12 \\ -4 & 8 \end{bmatrix}=4A^T

4)


AB=[1132][3201]=AB=\begin{bmatrix} 1 & -1 \\ 3 & 2 \end{bmatrix}\cdot\begin{bmatrix} 3 & -2 \\ 0 & 1 \end{bmatrix}=

=[1(3)+(1)(0)1(2)+(1)(1)3(3)+2(0)3(2)+2(1)]=[3394]=\begin{bmatrix} 1(3)+(-1)(0) & 1(-2)+(-1)(1) \\ 3(3)+2(0) & 3(-2)+2(1) \end{bmatrix}=\begin{bmatrix} 3 & -3 \\ 9 & -4 \end{bmatrix}

(AB)T=[3934](AB)^T=\begin{bmatrix} 3 & 9 \\ -3 & -4 \end{bmatrix}

BTAT=[3021][1312]=B^TA^T=\begin{bmatrix} 3 & 0 \\ -2 & 1 \end{bmatrix}\cdot\begin{bmatrix} 1 & 3 \\ -1 & 2 \end{bmatrix}=

=[3(1)+0(1)3(3)+0(2)2(1)+1(1)2(3)+1(2)]=[3934]=\begin{bmatrix} 3(1)+0(-1) & 3(3)+0(2) \\ -2(1)+1(-1) & -2(3)+1(2) \end{bmatrix}=\begin{bmatrix} 3 & 9 \\ -3 & -4 \end{bmatrix}

(AB)T=BTAT(AB)^T=B^TA^T

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS