2020-09-14T19:55:41-04:00
Show necessary step for the following questions
("For the given matrix"
A=the first row [1 -1] second row [3 2]
B=the first row [3 -2] second row [0 1]
1) show that (A^t)^t=A
2) show that (A+B)^t=A^t+B^t
3) show that (4A)^t=4(A^t)
4) show that (AB)^t=A^tB^t)
1
2020-09-15T17:30:41-0400
A = [ 1 − 1 3 2 ] , B = [ 3 − 2 0 1 ] A=\begin{bmatrix}
1 & -1 \\
3 & 2
\end{bmatrix}, B=\begin{bmatrix}
3 & -2 \\
0 & 1
\end{bmatrix} A = [ 1 3 − 1 2 ] , B = [ 3 0 − 2 1 ] 1)
A T = [ 1 3 − 1 2 ] A^T=\begin{bmatrix}
1 & 3 \\
-1 & 2
\end{bmatrix} A T = [ 1 − 1 3 2 ]
( A T ) T = [ 1 − 1 3 2 ] = A (A^T)^T=\begin{bmatrix}
1 & -1 \\
3 & 2
\end{bmatrix}=A ( A T ) T = [ 1 3 − 1 2 ] = A 2)
A + B = [ 1 − 1 3 2 ] + [ 3 − 2 0 1 ] = A+B=\begin{bmatrix}
1 & -1 \\
3 & 2
\end{bmatrix}+\begin{bmatrix}
3 & -2 \\
0 & 1
\end{bmatrix}= A + B = [ 1 3 − 1 2 ] + [ 3 0 − 2 1 ] =
= [ 1 + 3 − 1 − 2 3 + 0 2 + 1 ] = [ 4 − 3 3 3 ] =\begin{bmatrix}
1+3 & -1-2 \\
3+0 & 2+1
\end{bmatrix}=\begin{bmatrix}
4 & -3 \\
3 & 3
\end{bmatrix} = [ 1 + 3 3 + 0 − 1 − 2 2 + 1 ] = [ 4 3 − 3 3 ]
( A + B ) T = [ 4 3 − 3 3 ] (A+B)^T=\begin{bmatrix}
4 & 3 \\
-3 & 3
\end{bmatrix} ( A + B ) T = [ 4 − 3 3 3 ]
A T = [ 1 3 − 1 2 ] , B T = [ 3 0 − 2 1 ] A^T=\begin{bmatrix}
1 & 3 \\
-1 & 2
\end{bmatrix}, B^T=\begin{bmatrix}
3 & 0 \\
-2 & 1
\end{bmatrix} A T = [ 1 − 1 3 2 ] , B T = [ 3 − 2 0 1 ]
A T + B T = [ 1 3 − 1 2 ] + [ 3 0 − 2 1 ] = A^T+B^T=\begin{bmatrix}
1 &3 \\
-1 & 2
\end{bmatrix}+\begin{bmatrix}
3 & 0 \\
-2 & 1
\end{bmatrix}= A T + B T = [ 1 − 1 3 2 ] + [ 3 − 2 0 1 ] =
= [ 1 + 3 3 + 0 − 1 − 2 2 + 1 ] = [ 4 3 − 3 3 ] = ( A + B ) T =\begin{bmatrix}
1+3 & 3+0 \\
-1-2 & 2+1
\end{bmatrix}=\begin{bmatrix}
4 & 3\\
-3 & 3
\end{bmatrix}=(A+B)^T = [ 1 + 3 − 1 − 2 3 + 0 2 + 1 ] = [ 4 − 3 3 3 ] = ( A + B ) T 3)
4 A = 4 [ 1 − 1 3 2 ] = [ 4 ( 1 ) 4 ( − 1 ) 4 ( 3 ) 4 ( 2 ) ] = [ 4 − 4 12 8 ] 4A=4\begin{bmatrix}
1 & -1 \\
3 & 2
\end{bmatrix}=\begin{bmatrix}
4(1) & 4(-1) \\
4(3) & 4(2)
\end{bmatrix}=\begin{bmatrix}
4 & -4 \\
12 & 8
\end{bmatrix} 4 A = 4 [ 1 3 − 1 2 ] = [ 4 ( 1 ) 4 ( 3 ) 4 ( − 1 ) 4 ( 2 ) ] = [ 4 12 − 4 8 ]
( 4 A ) T = [ 4 12 − 4 8 ] (4A)^T=\begin{bmatrix}
4 & 12 \\
-4 & 8
\end{bmatrix} ( 4 A ) T = [ 4 − 4 12 8 ]
A T = [ 1 3 − 1 2 ] A^T=\begin{bmatrix}
1 & 3 \\
-1 & 2
\end{bmatrix} A T = [ 1 − 1 3 2 ]
4 A T = 4 [ 1 3 − 1 2 ] = [ 4 ( 1 ) 4 ( 3 ) 4 ( − 1 ) 4 ( 2 ) ] = [ 4 12 − 4 8 ] 4A^T=4\begin{bmatrix}
1 & 3 \\
-1 & 2
\end{bmatrix}=\begin{bmatrix}
4(1) & 4(3) \\
4(-1) & 4(2)
\end{bmatrix}=\begin{bmatrix}
4 & 12\\
-4 & 8
\end{bmatrix} 4 A T = 4 [ 1 − 1 3 2 ] = [ 4 ( 1 ) 4 ( − 1 ) 4 ( 3 ) 4 ( 2 ) ] = [ 4 − 4 12 8 ]
( 4 A ) T = [ 4 12 − 4 8 ] = 4 A T (4A)^T=\begin{bmatrix}
4 & 12 \\
-4 & 8
\end{bmatrix}=4A^T ( 4 A ) T = [ 4 − 4 12 8 ] = 4 A T 4)
A B = [ 1 − 1 3 2 ] ⋅ [ 3 − 2 0 1 ] = AB=\begin{bmatrix}
1 & -1 \\
3 & 2
\end{bmatrix}\cdot\begin{bmatrix}
3 & -2 \\
0 & 1
\end{bmatrix}= A B = [ 1 3 − 1 2 ] ⋅ [ 3 0 − 2 1 ] =
= [ 1 ( 3 ) + ( − 1 ) ( 0 ) 1 ( − 2 ) + ( − 1 ) ( 1 ) 3 ( 3 ) + 2 ( 0 ) 3 ( − 2 ) + 2 ( 1 ) ] = [ 3 − 3 9 − 4 ] =\begin{bmatrix}
1(3)+(-1)(0) & 1(-2)+(-1)(1) \\
3(3)+2(0) & 3(-2)+2(1)
\end{bmatrix}=\begin{bmatrix}
3 & -3 \\
9 & -4
\end{bmatrix} = [ 1 ( 3 ) + ( − 1 ) ( 0 ) 3 ( 3 ) + 2 ( 0 ) 1 ( − 2 ) + ( − 1 ) ( 1 ) 3 ( − 2 ) + 2 ( 1 ) ] = [ 3 9 − 3 − 4 ]
( A B ) T = [ 3 9 − 3 − 4 ] (AB)^T=\begin{bmatrix}
3 & 9 \\
-3 & -4
\end{bmatrix} ( A B ) T = [ 3 − 3 9 − 4 ]
B T A T = [ 3 0 − 2 1 ] ⋅ [ 1 3 − 1 2 ] = B^TA^T=\begin{bmatrix}
3 & 0 \\
-2 & 1
\end{bmatrix}\cdot\begin{bmatrix}
1 & 3 \\
-1 & 2
\end{bmatrix}= B T A T = [ 3 − 2 0 1 ] ⋅ [ 1 − 1 3 2 ] =
= [ 3 ( 1 ) + 0 ( − 1 ) 3 ( 3 ) + 0 ( 2 ) − 2 ( 1 ) + 1 ( − 1 ) − 2 ( 3 ) + 1 ( 2 ) ] = [ 3 9 − 3 − 4 ] =\begin{bmatrix}
3(1)+0(-1) & 3(3)+0(2) \\
-2(1)+1(-1) & -2(3)+1(2)
\end{bmatrix}=\begin{bmatrix}
3 & 9 \\
-3 & -4
\end{bmatrix} = [ 3 ( 1 ) + 0 ( − 1 ) − 2 ( 1 ) + 1 ( − 1 ) 3 ( 3 ) + 0 ( 2 ) − 2 ( 3 ) + 1 ( 2 ) ] = [ 3 − 3 9 − 4 ]
( A B ) T = B T A T (AB)^T=B^TA^T ( A B ) T = B T A T
Need a fast expert's response?
Submit order
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS !
Comments