Tofind:Solutionsofthesystem:−
4x + 2y + 3z = 0
3x − y + 2z = 0
x + 2y − z = 0
Theaugmentedmatrixassociatedwithabovesystemis−
⎣⎡4312−1232−1000⎦⎤
RowreducingabovematrixR1→R1−4R3andR2→R2−3R3
⎣⎡001−6−7275−1000⎦⎤
AgainR1→R1−R2weget−
⎣⎡0011−7225−1000⎦⎤
R3→R3−2R1gives−
⎣⎡0011−7025−5000⎦⎤
R2→R2+7R1gives−
⎣⎡001100219−5000⎦⎤
R2→191R2gives−
⎣⎡00110021−5000⎦⎤
So,thesystemofequationsgives−
y+2z=0⟹y=−2z
z=0
x−5z=0⟹x=5z⟹x=0
Similarly,y=−2z=>y=0
Hence,(0,0,0)istheonlysolutiontothissystem.
ThecoefficientmatrixisA−
⎣⎡4312−1232−1⎦⎤
andthedeterminantisgivenby−
det(A)=4∣∣−122−1∣∣−2∣∣312−1∣∣+3∣∣31−12∣∣
=4(1−4)−2(−3−2)+3(6+1)=4(−4)−2(−5)+3(7)
=−16+10+21=15
Observethatdet(A)=0whichimpliesthatthesolution
ofthissystemisunique.
Result :- A n x n non-homogeneous system of linear equations has a unique non-trivial solution if and only if its determinant is non-zero.
Comments