T o f i n d : S o l u t i o n s o f t h e s y s t e m : − \mathbf{To\;find: Solutions\;of\;the\;system:-} To find : Solutions of the system : −
4x + 2y + 3z = 0
3x − y + 2z = 0
x + 2y − z = 0
T h e a u g m e n t e d m a t r i x a s s o c i a t e d w i t h a b o v e s y s t e m i s − \mathbf{The \;augmented\;matrix\;associated\;with\;above\;system\;is-} The augmented matrix associated with above system is −
[ 4 2 3 0 3 − 1 2 0 1 2 − 1 0 ] \left[
\begin{array}{ccc|c}
4 & 2 & 3 & 0 \\
3 & -1 & 2 & 0 \\
1 & 2 & -1 & 0 \\
\end{array}
\right] ⎣ ⎡ 4 3 1 2 − 1 2 3 2 − 1 0 0 0 ⎦ ⎤
R o w r e d u c i n g a b o v e m a t r i x R 1 → R 1 − 4 R 3 a n d R 2 → R 2 − 3 R 3 \mathbf{Row\;reducing\;above\;matrix\;R_1 \to R_1-4R_3\;and\;R_2\to R_2-3R_3} Row reducing above matrix R 1 → R 1 − 4 R 3 and R 2 → R 2 − 3 R 3
[ 0 − 6 7 0 0 − 7 5 0 1 2 − 1 0 ] \left[
\begin{array}{ccc|c}
0 & -6 & 7 & 0 \\
0 & -7 & 5 & 0 \\
1 & 2 & -1 & 0 \\
\end{array}
\right] ⎣ ⎡ 0 0 1 − 6 − 7 2 7 5 − 1 0 0 0 ⎦ ⎤
A g a i n R 1 → R 1 − R 2 w e g e t − \mathbf{Again\;R_1\to R_1-R_2\;we\;get-} Again R 1 → R 1 − R 2 we get −
[ 0 1 2 0 0 − 7 5 0 1 2 − 1 0 ] \left[
\begin{array}{ccc|c}
0 & 1 & 2 & 0 \\
0 & -7 & 5 & 0 \\
1 & 2 & -1 & 0 \\
\end{array}
\right] ⎣ ⎡ 0 0 1 1 − 7 2 2 5 − 1 0 0 0 ⎦ ⎤
R 3 → R 3 − 2 R 1 g i v e s − \mathbf{R_3\to R_3-2R_1\;gives-} R 3 → R 3 − 2 R 1 gives −
[ 0 1 2 0 0 − 7 5 0 1 0 − 5 0 ] \left[
\begin{array}{ccc|c}
0 & 1 & 2 & 0 \\
0 & -7 & 5 & 0 \\
1 & 0 & -5 & 0 \\
\end{array}
\right] ⎣ ⎡ 0 0 1 1 − 7 0 2 5 − 5 0 0 0 ⎦ ⎤
R 2 → R 2 + 7 R 1 g i v e s − \mathbf{R_2\to R_2+7R_1\;gives-} R 2 → R 2 + 7 R 1 gives −
[ 0 1 2 0 0 0 19 0 1 0 − 5 0 ] \left[
\begin{array}{ccc|c}
0 & 1 & 2 & 0 \\
0 & 0 & 19 & 0 \\
1 & 0 & -5 & 0 \\
\end{array}
\right] ⎣ ⎡ 0 0 1 1 0 0 2 19 − 5 0 0 0 ⎦ ⎤
R 2 → 1 19 R 2 g i v e s − \mathbf{R_2\to \dfrac{1}{19} R_2\;gives-} R 2 → 19 1 R 2 gives −
[ 0 1 2 0 0 0 1 0 1 0 − 5 0 ] \left[
\begin{array}{ccc|c}
0 & 1 & 2 & 0 \\
0 & 0 & 1 & 0 \\
1 & 0 & -5 & 0 \\
\end{array}
\right] ⎣ ⎡ 0 0 1 1 0 0 2 1 − 5 0 0 0 ⎦ ⎤
S o , t h e s y s t e m o f e q u a t i o n s g i v e s − \mathbf{So,\;the\;system\;of\;equations\;gives-} So , the system of equations gives −
y + 2 z = 0 ⟹ y = − 2 z \mathbf{y+2z=0 \implies y=-2z} y + 2z = 0 ⟹ y = − 2z
z = 0 \mathbf{z=0} z = 0
x − 5 z = 0 ⟹ x = 5 z ⟹ x = 0 \mathbf{x-5z=0 \implies x=5z \implies x=0} x − 5z = 0 ⟹ x = 5z ⟹ x = 0
S i m i l a r l y , y = − 2 z = > y = 0 \mathbf{Similarly, y=-2z => y=0} Similarly , y = − 2z => y = 0
H e n c e , ( 0 , 0 , 0 ) i s t h e o n l y s o l u t i o n t o t h i s s y s t e m . \mathbf{Hence,\;(0,0,0)\;is\;the\;only\;solution\;to\;this\;system.} Hence , ( 0 , 0 , 0 ) is the only solution to this system.
T h e c o e f f i c i e n t m a t r i x i s A − \mathbf{The\;coefficient\;matrix\;is\;A-} The coefficient matrix is A −
[ 4 2 3 3 − 1 2 1 2 − 1 ] \left[
\begin{array}{ccc}
4 & 2 & 3\\
3 & -1 & 2\\
1 & 2 & -1\\
\end{array}
\right] ⎣ ⎡ 4 3 1 2 − 1 2 3 2 − 1 ⎦ ⎤
a n d t h e d e t e r m i n a n t i s g i v e n b y − \mathbf{and\;the\;determinant\;is\;given\;by-} and the determinant is given by −
d e t ( A ) = 4 ∣ − 1 2 2 − 1 ∣ − 2 ∣ 3 2 1 − 1 ∣ + 3 ∣ 3 − 1 1 2 ∣ \mathbf{det(A)=4}\begin{vmatrix}
-1 & 2 \\
2 & -1
\end{vmatrix}-2\begin{vmatrix}
3 & 2 \\
1 & -1
\end{vmatrix}+3\begin{vmatrix}
3 & -1 \\
1 & 2
\end{vmatrix} det ( A ) = 4 ∣ ∣ − 1 2 2 − 1 ∣ ∣ − 2 ∣ ∣ 3 1 2 − 1 ∣ ∣ + 3 ∣ ∣ 3 1 − 1 2 ∣ ∣
= 4 ( 1 − 4 ) − 2 ( − 3 − 2 ) + 3 ( 6 + 1 ) = 4 ( − 4 ) − 2 ( − 5 ) + 3 ( 7 ) \mathbf{=4(1-4)-2(-3-2)+3(6+1)=4(-4)-2(-5)+3(7)} = 4 ( 1 − 4 ) − 2 ( − 3 − 2 ) + 3 ( 6 + 1 ) = 4 ( − 4 ) − 2 ( − 5 ) + 3 ( 7 )
= − 16 + 10 + 21 = 15 \mathbf{=-16+10+21=15} = − 16 + 10 + 21 = 15
O b s e r v e t h a t d e t ( A ) ≠ 0 w h i c h i m p l i e s t h a t t h e s o l u t i o n \mathbf{Observe\;that\;det(A) \neq 0 \;which \;implies\;that\;the\;solution } Observe that det ( A ) = 0 which implies that the solution
o f t h i s s y s t e m i s u n i q u e . \mathbf{ \;of\;this\;system\;is\;unique.} of this system is unique.
Result :- A n x n non-homogeneous system of linear equations has a unique non-trivial solution if and only if its determinant is non-zero.
Comments