Question #135939

Find all solutions of this system.

4x + 2y + 3z = 0

3x − y + 2z = 0

x + 2y − z = 0

Compare the value of the determinant of the coefficient matrix to zero using the nature

of the solution.


1
Expert's answer
2020-10-01T15:13:10-0400

To  find:Solutions  of  the  system:\mathbf{To\;find: Solutions\;of\;the\;system:-}


4x + 2y + 3z = 0

3x − y + 2z = 0

x + 2y − z = 0


The  augmented  matrix  associated  with  above  system  is\mathbf{The \;augmented\;matrix\;associated\;with\;above\;system\;is-}


[423031201210]\left[ \begin{array}{ccc|c} 4 & 2 & 3 & 0 \\ 3 & -1 & 2 & 0 \\ 1 & 2 & -1 & 0 \\ \end{array} \right]


Row  reducing  above  matrix  R1R14R3  and  R2R23R3\mathbf{Row\;reducing\;above\;matrix\;R_1 \to R_1-4R_3\;and\;R_2\to R_2-3R_3}


[067007501210]\left[ \begin{array}{ccc|c} 0 & -6 & 7 & 0 \\ 0 & -7 & 5 & 0 \\ 1 & 2 & -1 & 0 \\ \end{array} \right]


Again  R1R1R2  we  get\mathbf{Again\;R_1\to R_1-R_2\;we\;get-}


[012007501210]\left[ \begin{array}{ccc|c} 0 & 1 & 2 & 0 \\ 0 & -7 & 5 & 0 \\ 1 & 2 & -1 & 0 \\ \end{array} \right]


R3R32R1  gives\mathbf{R_3\to R_3-2R_1\;gives-}


[012007501050]\left[ \begin{array}{ccc|c} 0 & 1 & 2 & 0 \\ 0 & -7 & 5 & 0 \\ 1 & 0 & -5 & 0 \\ \end{array} \right]


R2R2+7R1  gives\mathbf{R_2\to R_2+7R_1\;gives-}


[0120001901050]\left[ \begin{array}{ccc|c} 0 & 1 & 2 & 0 \\ 0 & 0 & 19 & 0 \\ 1 & 0 & -5 & 0 \\ \end{array} \right]


R2119R2  gives\mathbf{R_2\to \dfrac{1}{19} R_2\;gives-}


[012000101050]\left[ \begin{array}{ccc|c} 0 & 1 & 2 & 0 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & -5 & 0 \\ \end{array} \right]


So,  the  system  of  equations  gives\mathbf{So,\;the\;system\;of\;equations\;gives-}


y+2z=0    y=2z\mathbf{y+2z=0 \implies y=-2z}

z=0\mathbf{z=0}

x5z=0    x=5z    x=0\mathbf{x-5z=0 \implies x=5z \implies x=0}

Similarly,y=2z=>y=0\mathbf{Similarly, y=-2z => y=0}


Hence,  (0,0,0)  is  the  only  solution  to  this  system.\mathbf{Hence,\;(0,0,0)\;is\;the\;only\;solution\;to\;this\;system.}


The  coefficient  matrix  is  A\mathbf{The\;coefficient\;matrix\;is\;A-}


[423312121]\left[ \begin{array}{ccc} 4 & 2 & 3\\ 3 & -1 & 2\\ 1 & 2 & -1\\ \end{array} \right]


and  the  determinant  is  given  by\mathbf{and\;the\;determinant\;is\;given\;by-}


det(A)=4122123211+33112\mathbf{det(A)=4}\begin{vmatrix} -1 & 2 \\ 2 & -1 \end{vmatrix}-2\begin{vmatrix} 3 & 2 \\ 1 & -1 \end{vmatrix}+3\begin{vmatrix} 3 & -1 \\ 1 & 2 \end{vmatrix}


=4(14)2(32)+3(6+1)=4(4)2(5)+3(7)\mathbf{=4(1-4)-2(-3-2)+3(6+1)=4(-4)-2(-5)+3(7)}


=16+10+21=15\mathbf{=-16+10+21=15}


Observe  that  det(A)0  which  implies  that  the  solution\mathbf{Observe\;that\;det(A) \neq 0 \;which \;implies\;that\;the\;solution }

  of  this  system  is  unique.\mathbf{ \;of\;this\;system\;is\;unique.}


Result :- A n x n non-homogeneous system of linear equations has a unique non-trivial solution if and only if its determinant is non-zero.











Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS