"\\textsf{Let}\\hspace{0.1cm}A = \\begin{pmatrix} \na_1 & a_2 & a_3\\\\\na_4 & a_5 & a_6\\\\\na_7 & a_8 & a_9\n\\end{pmatrix}\\\\\n\n\\mathrm{det} A = a_1(a_5(a_9 + 2a_3) - a_6(a_8 + 2a_2)) - a_2(a_4(a_9 + 2a_3) - a_6(a_7 + 2a_1)) + a_3(a_4(a_8 + 2a_2) - a_5(a_7 + 2a_1)) = a_1(a_5(a_9) - a_6(a_8)) - a_2(a_4(a_9) - a_6(a_7)) + a_3(a_4(a_8) - a_5(a_7))\\\\\n\nB = \n\\begin{pmatrix} \na_1 & a_2 & a_3\\\\\na_4 & a_5 & a_6\\\\\na_7 + 2a_1 & a_8 + 2a_2 & a_9 + 2a_3\n\\end{pmatrix} = \\\\a_1(a_5(a_9 + 2a_3) - a_6(a_8 + 2a_2)) - a_2(a_4(a_9 + 2a_3) - a_6(a_7 + 2a_1)) + a_3(a_4(a_8 + 2a_2) - a_5(a_7 + 2a_1)) \\\\= a_1(a_5(a_9) - a_6(a_8)) - a_2(a_4(a_9) - a_6(a_7)) + a_3(a_4(a_8) - a_5(a_7)) + 2(a_1a_3a_5 - a_1a_2a_6 - a_2a_3a_4 + a_1a_2a_6 + a_2a_3a_4 - a_1a_3a_5) \\\\= a_1(a_5(a_9) - a_6(a_8)) - a_2(a_4(a_9) - a_6(a_7)) + a_3(a_4(a_8) - a_5(a_7)) + 0 = a_1(a_5(a_9) - a_6(a_8)) - a_2(a_4(a_9) - a_6(a_7)) + a_3(a_4(a_8) - a_5(a_7)) = \\mathrm{det} A"
Comments
Leave a comment