Question #137171
Suppose A and B are 3x3 matrices. Show that If B is obtained from A by adding 2 times the first row of A to the last row of A, then det(A) =det(B).
1
Expert's answer
2020-10-07T12:38:49-0400

LetA=(a1a2a3a4a5a6a7a8a9)detA=a1(a5(a9+2a3)a6(a8+2a2))a2(a4(a9+2a3)a6(a7+2a1))+a3(a4(a8+2a2)a5(a7+2a1))=a1(a5(a9)a6(a8))a2(a4(a9)a6(a7))+a3(a4(a8)a5(a7))B=(a1a2a3a4a5a6a7+2a1a8+2a2a9+2a3)=a1(a5(a9+2a3)a6(a8+2a2))a2(a4(a9+2a3)a6(a7+2a1))+a3(a4(a8+2a2)a5(a7+2a1))=a1(a5(a9)a6(a8))a2(a4(a9)a6(a7))+a3(a4(a8)a5(a7))+2(a1a3a5a1a2a6a2a3a4+a1a2a6+a2a3a4a1a3a5)=a1(a5(a9)a6(a8))a2(a4(a9)a6(a7))+a3(a4(a8)a5(a7))+0=a1(a5(a9)a6(a8))a2(a4(a9)a6(a7))+a3(a4(a8)a5(a7))=detA\textsf{Let}\hspace{0.1cm}A = \begin{pmatrix} a_1 & a_2 & a_3\\ a_4 & a_5 & a_6\\ a_7 & a_8 & a_9 \end{pmatrix}\\ \mathrm{det} A = a_1(a_5(a_9 + 2a_3) - a_6(a_8 + 2a_2)) - a_2(a_4(a_9 + 2a_3) - a_6(a_7 + 2a_1)) + a_3(a_4(a_8 + 2a_2) - a_5(a_7 + 2a_1)) = a_1(a_5(a_9) - a_6(a_8)) - a_2(a_4(a_9) - a_6(a_7)) + a_3(a_4(a_8) - a_5(a_7))\\ B = \begin{pmatrix} a_1 & a_2 & a_3\\ a_4 & a_5 & a_6\\ a_7 + 2a_1 & a_8 + 2a_2 & a_9 + 2a_3 \end{pmatrix} = \\a_1(a_5(a_9 + 2a_3) - a_6(a_8 + 2a_2)) - a_2(a_4(a_9 + 2a_3) - a_6(a_7 + 2a_1)) + a_3(a_4(a_8 + 2a_2) - a_5(a_7 + 2a_1)) \\= a_1(a_5(a_9) - a_6(a_8)) - a_2(a_4(a_9) - a_6(a_7)) + a_3(a_4(a_8) - a_5(a_7)) + 2(a_1a_3a_5 - a_1a_2a_6 - a_2a_3a_4 + a_1a_2a_6 + a_2a_3a_4 - a_1a_3a_5) \\= a_1(a_5(a_9) - a_6(a_8)) - a_2(a_4(a_9) - a_6(a_7)) + a_3(a_4(a_8) - a_5(a_7)) + 0 = a_1(a_5(a_9) - a_6(a_8)) - a_2(a_4(a_9) - a_6(a_7)) + a_3(a_4(a_8) - a_5(a_7)) = \mathrm{det} A


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS