(a) Express cos7 θ in terms of multiples of angles.
(b) Express cos4 θ sin3 θ in terms of multiples of angles.
(c) Using complex numbers, prove that the, angles A, B and C of a planar triangle satisfy the relations (i) cos2 A + cos2 B + cos2 C = 1 − 2 cos A cos B cos C
(ii) sin 2A + sin 2B + sin 2C = 4 sin A sin B sin C.
"\\displaystyle(a)\\\\\\textsf{We know from our knowledge on Complex Numbers that,} \\\\\n\n\\begin{aligned}\n\\cos(n\\theta) + i\\sin(n\\theta) &= (\\cos\\theta + i\\sin\\theta)^n\\\\\n\\cos(7\\theta) + i\\sin(7\\theta) &= (\\cos\\theta + i\\sin\\theta)^7\\\\\n&= \\cos^7\\theta + 7\\cos^6\\theta(i\\sin\\theta) + 21\\cos^5\\theta(i\\sin\\theta)^2 + 35\\cos^4\\theta(i\\sin\\theta)^3 \\\\&+ 35\\cos^3\\theta(i\\sin\\theta)^4 + 21\\cos^2\\theta(i\\sin\\theta)^5 + 7\\cos\\theta(i\\sin\\theta)^6 + (i\\sin\\theta)^7\\\\\n&= \\cos^7\\theta + 7i\\cos^6\\theta\\sin\\theta - 21\\cos^5\\theta\\sin^2\\theta - 35i\\cos^4\\theta\\sin^3\\theta \\\\&+ 35\\cos^3\\theta\\sin^4\\theta + 21i\\cos^2\\theta\\sin^5\\theta - 7\\cos\\theta\\sin^6\\theta - i\\sin^7\\theta\n\\end{aligned}\\\\\n\n\\textsf{Comparing the real parts}\\\\\n\\begin{aligned}\n\\cos(7\\theta) = \\cos^7\\theta - 21\\cos^5\\theta\\sin^2\\theta\n\\\\&+ 35\\cos^3\\theta\\sin^4\\theta - 7\\cos\\theta\\sin^6\\theta\n\\end{aligned}\\\\\n(b)\\\\\n\\begin{aligned}\n\\cos(n\\theta) + i\\sin(n\\theta) &= (\\cos\\theta + i\\sin\\theta)^n\\\\\n\\cos(4\\theta) + i\\sin(4\\theta) &= (\\cos\\theta + i\\sin\\theta)^4\\\\\n&= \\cos^4\\theta + 4\\cos^3\\theta(i\\sin\\theta) + 6\\cos^2\\theta(-\\sin^2\\theta)\\\\\n&\\hspace{0.3cm}+ 4\\cos^3\\theta(-i\\sin^3\\theta) + \\sin^4\\theta\n\\end{aligned}\\\\\n\n\\textsf{Comparing the real parts}\\\\\n\n\\cos(4\\theta) = \\cos^4\\theta + \\sin^4\\theta - 6\\cos^2\\theta\\sin^2\\theta \\hspace{1cm} (2)\\\\\n\n\\textsf{Also}\\\\\n\\begin{aligned}\n\\cos(3\\theta) + i\\sin(3\\theta) &= (\\cos\\theta + \\sin\\theta)^3 \\\\\n&= \\cos^3\\theta + 3\\cos^2\\theta(i\\sin\\theta) + 3\\cos\\theta(-\\sin^2\\theta) - i\\sin^3\\theta \\hspace{1cm} (3)\n\\end{aligned}\\\\\n\n\\textsf{Comparing the imaginary parts}\\\\\n\\sin(3\\theta) = 3\\cos^2\\theta\\sin\\theta - \\sin^3\\theta \\\\\n\n\\textsf{To derive the value of}\\, \\cos(4\\theta)\\sin(3\\theta), \\textsf{Multiply the result in}\\\\\n\\textsf{equation}\\, (3) \\,\\textsf{by the result in equation}\\, (2) \\\\\n\n\\begin{aligned}\n\\therefore \\cos(4\\theta)\\sin(3\\theta) &=\n(\\cos^4\\theta + \\sin^4\\theta - 6\\cos^2\\theta\\sin^2\\theta)(3\\cos^2\\theta\\sin\\theta - \\sin^3\\theta)\\\\\n&= 3\\cos^6\\theta\\sin\\theta + 3\\cos^2\\theta\\sin^5\\theta - 18\\cos^4\\theta\\sin^3\\theta - \\\\&\\cos^4\\theta\\sin^3\\theta - \\sin^7\\theta + 6\\cos^2\\theta\\sin^5\\theta \\\\\n&= 3\\cos^6\\theta\\sin\\theta + 9\\cos^2\\theta\\sin^5\\theta - 19\\cos^4\\theta \\sin^3\\theta - \\sin^7\\theta\n\\end{aligned} \\\\\n\n\\implies \\cos(4\\theta)\\sin(3\\theta) = 3\\cos^6\\theta\\sin\\theta + 9\\cos^2\\theta\\sin^5\\theta - 19\\cos^4\\theta \\sin^3\\theta - \\sin^7\\theta \\\\\n\n(c)(i)\\\\\\textsf{Prove that}\\\\\n\\sin(2A) + \\sin(2B) + \\sin(2C) = 4\\sin A \\sin B \\sin C \\\\\n\\textsf{Since the figure is a planar triangle}\\\\\nA + B + C = \\pi\\\\\n\\textsf{It is known that,}\\\\\n\\sin P + \\sin Q = 2\\sin\\left(\\frac{P + Q}{2}\\right)\\cos\\left(\\frac{P - Q}{2}\\right) \\\\\n\n\\begin{aligned}\n\\sin(2A) + \\sin(2B) + \\sin(2C) &= 2\\sin(A + B)\\cos(A - B) + \\sin(2C)\\\\\n&= 2\\sin(\\pi - C)\\cos(A - B) + 2\\sin(C)\\cos(C)\\\\\n&= 2\\sin(C)\\cos(A - B) + 2\\sin(C)\\cos(C)\\\\\n&= 2\\sin(C)(\\cos(A - B) + \\cos(C))\n\\end{aligned} \\\\\n\n\\textsf{It is also known that,}\\\\\n\n\\cos P + \\cos Q = 2\\cos\\left(\\frac{P + Q}{2}\\right)\\cos\\left(\\frac{P - Q}{2}\\right) \\\\\n\n\\begin{aligned}\n\\implies \\sin(2A) + \\sin(2B) + \\sin(2C) &= 2\\sin(C)\\left(2\\cos\\left(\\frac{A + C - B}{2}\\right)\\cos\\left(\\frac{A -B - C}{2}\\right)\n\\right)\\\\\n&= 4\\sin C \\cos\\left(\\frac{\\pi}{2} - B\\right) \\cos\\left(\\frac{\\pi}{2} - A\\right) \\\\\n&= 4\\sin C \\sin B \\sin A\\\\\n&= 4\\sin A \\sin B \\sin C\n\\end{aligned}\\\\\n\n\n(ii)\\\\\\begin{aligned}\n\\cos(2A) + \\cos(2B) + \\cos(2C) \\\\&= 2\\cos\\left(\\frac{2(A + B)}{2}\\right)\\cos\\left(\\frac{2(A - B)}{2}\\right) + \\cos(2C)\n\\\\&= 2\\cos(\\pi - C)\\cos(A - B) + 2\\cos^2 C - 1\n\\\\&= 2\\cos C (\\cos C - \\cos(A - B)) - 1\n\\end{aligned}\\\\\n\\textsf{It is also known that,}\\\\\n\n\\cos P - \\cos Q = 2\\sin\\left(\\frac{P + Q}{2}\\right)\\sin\\left(\\frac{P - Q}{2}\\right) \\\\\n\n\\begin{aligned}\n\\cos(2A) + \\cos(2B) + \\cos(2C) \\\\&= 2\\cos C \\left(2\\sin\\left(\\frac{A + C - B}{2}\\right)\\sin\\left(\\frac{C - A+ B}{2}\\right)\\right) - 1\n\\\\&= 2\\cos C \\left(2\\sin\\left(\\frac{\\pi}{2} - B\\right)\\sin\\left(\\frac{\\pi}{2} - A\\right)\\right) - 1\n\\\\&= 2\\cos C(2\\cos B \\times 2\\cos A) - 1 = 4\\cos A \\cos B \\cos C - 1\n\\end{aligned}"
Comments
Leave a comment