Solution:By definition of kernel A,ker(A)={x∈R5∣Ax=0}.∴ we solve the equation, Ax=0
∴⎣⎡201233−331−12022430130⎦⎤⎣⎡x1x2x3x4x5⎦⎤=⎣⎡0000⎦⎤,where A=⎣⎡201233−331−12022430130⎦⎤ ,x=⎣⎡x1x2x3x4x5⎦⎤ and 0=⎣⎡0000⎦⎤
Now we write in augmented matrix form as
∴⎣⎡201233−331−12022430130∣0∣0∣0∣0⎦⎤Now solve this augmented matrix to get solution of Ax=0
Applying R1⇒(21)R1⎣⎡1012233−3321−12012430130∣0∣0∣0∣0⎦⎤
Applying R3⇒ R3−R1 and R4⇒ R4−2R1⎣⎡1000233−29021−123−112310130∣0∣0∣0∣0⎦⎤
Applying R2⇒ (31)R2⎣⎡1000231−29021−3123−11323103130∣0∣0∣0∣0⎦⎤
Applying R3⇒ R3+(29)R2⎣⎡10002310021−310−113261031290∣0∣0∣0∣0⎦⎤
Applying R3⇔R4⎣⎡10002310021−31−1013216031029∣0∣0∣0∣0⎦⎤
Applying R3⇒(−1)R3 and R4⇒(61)R4⎣⎡10002310021−3110132−11031043∣0∣0∣0∣0⎦⎤
which is row echelon form. Now we can find the solution.Here x5 has no leading 1.∴x5 is free variable.∴we put x5=t {where t∈R}By back substitution we get the equations
x4+(43)x5=0⇒x4=−43x5=−43tx3−x4=0⇒x3=x4=−43t
x2−31x3+32x4+31x5=0⇒x2=31x3−32x4−31x5=31(−43t)−32(−43t)−31t=(−123)t+126t−31t=t(−123+126−31)=t(123−31)=t(41−31)=t(123−4)=t(−121)=−121t
∴x2=−121t
and last equation x1+23x2+21x3+x4=0
∴x1=−23x2−21x3−x4=−23(−121t)−21(−43t)−(−43t)=243t+83t+43t
x1=t(243+83+43)=t(81+83+43)=t(84+43)=t(84+43)=t(21+43)=45t
∴ker(A)=⎣⎡x1x2x3x4x5⎦⎤={⎣⎡45t−121t−43t−43t1⎦⎤∣t∈R}={⎣⎡45−121−43−431⎦⎤t ∣t∈R}
Range(A)= columns of leading 1′s in row echelon form∴ Range(A)={⎣⎡2012⎦⎤,⎣⎡33−33⎦⎤,⎣⎡1−120⎦⎤,⎣⎡2243⎦⎤}
Rank(A)=number of non zero rows in row echelon formrank(A)=4
By rank nullity theorem,rank(A)+nullity(A)=n, where n is number of columns in matrix A
∴4+nullity(A)=5⇒ nullity(A)=5−4=1∴nullity(A)=1
Comments