Determine the range, kernel, rank and nullity of the given matrix,
A = [2 3 1 2 0
0 3 −1 2 1
1 -3 2 4 3
2 3 0 3 0]
"Solution: By ~definition~ of~ kernel~ A, ker(A)= \\{x \\in R^5 |Ax=0 \\}. \\\\ \\therefore ~we ~solve~ the~ equation,~ Ax=0"
"\\therefore \\begin{bmatrix}\n 2 & 3 & 1 & 2 & 0 \\\\\n 0 & 3 & -1 & 2 & 1 \\\\\n 1 & -3 & 2 & 4 & 3 \\\\\n2&3&0&3&0\n\\end{bmatrix}\n\\begin{bmatrix} x_1 \\\\x_2\\\\x_3\\\\x_4\\\\x_5\\end{bmatrix}\n=\\begin{bmatrix} 0 \\\\0\\\\0\\\\0\\end{bmatrix} , \\\\where ~A=\\begin{bmatrix}\n 2 & 3 & 1 & 2 & 0 \\\\\n 0 & 3 & -1 & 2 & 1 \\\\\n 1 & -3 & 2 & 4 & 3 \\\\\n2&3&0&3&0\n\\end{bmatrix}~,x=\\begin{bmatrix} x_1 \\\\x_2\\\\x_3\\\\x_4\\\\x_5\\end{bmatrix}~ and~ 0=\\begin{bmatrix} 0 \\\\0\\\\0\\\\0\\end{bmatrix}"
"Now ~we~ write ~ in ~ augmented ~ matrix ~ form ~ as"
"\\therefore \\begin{bmatrix}\n 2 & 3 & 1 & 2 & 0 &|0\\\\\n 0 & 3 & -1 & 2 & 1&|0 \\\\\n 1 & -3 & 2 & 4 & 3&|0 \\\\\n 2 & 3 & 0 & 3 & 0 &|0\n \\end{bmatrix} \\\\Now ~solve ~ this ~ augmented ~ matrix ~ to ~ get~ solution ~ of ~Ax=0"
"Applying ~ R_1\\Rightarrow(\\frac{1}{2})R_1\n\\\\ \\begin{bmatrix}\n 1 & \\frac{3}{2} & \\frac{1}{2} & 1 & 0 &|0\\\\\n 0 & 3 & -1 & 2 & 1&|0 \\\\\n 1 & -3 & 2 & 4 & 3&|0 \\\\\n 2 & 3 & 0 & 3 & 0 &|0\n \\end{bmatrix}"
"Applying ~ R_3\\Rightarrow ~ R_3-R_1~ and ~R_4\\Rightarrow ~ R_4-2R_1\n\\\\ \\begin{bmatrix}\n 1 & \\frac{3}{2} & \\frac{1}{2} & 1 & 0 &|0\\\\\n 0 & 3 & -1 & 2 & 1&|0 \\\\\n 0 & -\\frac{9}{2} & \\frac{3}{2} & 3 & 3&|0 \\\\\n 0 & 0 & -1 & 1 & 0 &|0\n \\end{bmatrix}"
"Applying ~ R_2\\Rightarrow ~ (\\frac{1}{3})R_2\n\\\\ \\begin{bmatrix}\n 1 & \\frac{3}{2} & \\frac{1}{2} & 1 & 0 &|0\\\\\n 0 & 1 & -\\frac{1}{3} & \\frac{2}{3}&\\frac{1}{3}&|0 \\\\\n 0 & -\\frac{9}{2} & \\frac{3}{2} & 3 & 3&|0 \\\\\n 0 & 0 & -1 & 1 & 0 &|0\n \\end{bmatrix}"
"Applying ~ R_3\\Rightarrow ~R_3+ (\\frac{9}{2})R_2\n\\\\ \\begin{bmatrix}\n 1 & \\frac{3}{2} & \\frac{1}{2} & 1 & 0 &|0\\\\\n 0 & 1 & -\\frac{1}{3} & \\frac{2}{3}&\\frac{1}{3}&|0 \\\\\n 0 & 0 & 0 & 6 & \\frac{9}{2}&|0 \\\\\n 0 & 0 & -1 & 1 & 0 &|0\n \\end{bmatrix}"
"Applying ~ R_3 \\Leftrightarrow R_4\n\\\\ \\begin{bmatrix}\n 1 & \\frac{3}{2} & \\frac{1}{2} & 1 & 0 &|0\\\\\n 0 & 1 & -\\frac{1}{3} & \\frac{2}{3}&\\frac{1}{3}&|0 \\\\\n 0&0&-1&1&0&|0\\\\\n 0 & 0 & 0 & 6 & \\frac{9}{2}&|0 \\\\\n \\end{bmatrix}"
"Applying ~ R_3 \\Rightarrow(-1) R_3~ and ~ R_4 \\Rightarrow(\\frac{1}{6}) R_4\n\\\\ \\begin{bmatrix}\n 1 & \\frac{3}{2} & \\frac{1}{2} & 1 & 0 &|0\\\\\n 0 & 1 & -\\frac{1}{3} & \\frac{2}{3}&\\frac{1}{3}&|0 \\\\\n 0&0&1&-1&0&|0\\\\\n 0 & 0 & 0 & 1 & \\frac{3}{4}&|0 \\\\\n \\end{bmatrix}"
"which ~ is ~ row ~ echelon~ form. ~Now~ we ~can ~ find ~ the ~ solution.\\\\Here~ x_5 ~has~ no ~ leading~ 1. \\\\ \\therefore x_5 ~ ~ is ~ free ~ variable.\\\\ \\therefore we~ put ~ x_5 =t ~~~~\\{where~ t\\in R\\} \\\\ By ~ back ~ substitution~ we ~ get ~ the ~ equations~"
"x_4+(\\frac{3}{4})x_5=0\\Rightarrow x_4=-\\frac{3}{4}x_5=-\\frac{3}{4}t \\\\x_3-x_4=0\\Rightarrow x_3=x_4=-\\frac{3}{4}t"
"x_2-\\frac{1}{3}x_3+\\frac{2}{3}x_4+\\frac{1}{3}x_5=0\\Rightarrow x_2=\\frac{1}{3}x_3-\\frac{2}{3}x_4-\\frac{1}{3}x_5=\\frac{1}{3}(-\\frac{3}{4}t)-\\frac{2}{3}(-\\frac{3}{4}t)-\\frac{1}{3}t=(-\\frac{3}{12})t+\\frac{6}{12}t-\\frac{1}{3}t=t(-\\frac{3}{12}+\\frac{6}{12}-\\frac{1}{3})=t(\\frac{3}{12}-\\frac{1}{3})=t(\\frac{1}{4}-\\frac{1}{3})=t(\\frac{3-4}{12})=t(-\\frac{1}{12})=-\\frac{1}{12}t"
"\\therefore x_2=-\\frac{1}{12}t"
"and ~last~ equation~ x_1+\\frac{3}{2}x_2+\\frac{1}{2}x_3+x_4=0"
"\\therefore x_1=-\\frac{3}{2}x_2-\\frac{1}{2}x_3-x_4=-\\frac{3}{2}(-\\frac{1}{12}t)-\\frac{1}{2}(-\\frac{3}{4}t)-(-\\frac{3}{4}t)=\\frac{3}{24}t+\\frac{3}{8}t+\\frac{3}{4}t"
"x_1=t(\\frac{3}{24}+\\frac{3}{8}+\\frac{3}{4})=t(\\frac{1}{8}+\\frac{3}{8}+\\frac{3}{4})=t(\\frac{4}{8}+\\frac{3}{4})=t(\\frac{4}{8}+\\frac{3}{4})=t(\\frac{1}{2}+\\frac{3}{4})=\\frac{5}{4}t"
"\\therefore ker(A)=\\begin{bmatrix} x_1 \\\\x_2\\\\x_3\\\\x_4\\\\x_5\\end{bmatrix}=\\{\\begin{bmatrix} \\frac{5}{4}t \\\\-\\frac{1}{12}t \\\\-\\frac{3}{4}t \\\\-\\frac{3}{4}t\\\\ 1 \\end{bmatrix} | t\\in R\\}=\\{\\begin{bmatrix} \\frac{5}{4}\\\\-\\frac{1}{12} \\\\-\\frac{3}{4}\\\\-\\frac{3}{4}\\\\ 1 \\end{bmatrix} t ~~| t\\in R\\}"
"Range(A)=~columns~ of~leading ~1's ~ in ~ row ~ echelon~ form\\\\ \\therefore~ Range(A)=\\{ \\begin{bmatrix} 2 \\\\0\\\\1\\\\2\\end{bmatrix},\\begin{bmatrix} 3 \\\\3\\\\-3\\\\3\\end{bmatrix},\\begin{bmatrix} 1 \\\\-1\\\\2\\\\0\\end{bmatrix},\\begin{bmatrix} 2 \\\\2\\\\4\\\\3\\end{bmatrix}\\}"
"Rank (A)= number ~ of ~ non~ zero~ rows~in ~ row ~ echelon~ form \\\\ rank(A)=4"
"By ~rank ~ nullity~ theorem,\\\\rank(A)+nullity(A)=n, ~ where ~ n ~ is ~ number ~ of ~columns ~ in ~matrix ~A"
"\\therefore 4+nullity(A)=5\\Rightarrow~nullity(A)=5-4=1\\\\ \\therefore nullity(A)=1"
Comments
Leave a comment