Question #153651

Let F be the field of complex numbers and let T be the function from F

3

into F

3 defined by


T(x1, x2, x3) = (x1 − x2 + 2x3 ,2x1 + x2 , − x1 − 2 x2 + 2x3 )

i. Verify that T is a linear transformation.

ii. If (a, b, c) is a vector in F

3, what are the conditions on a, b and c that the vector bein the range of T? What is the rank of T?

iii. What are the conditions on a, b and c that the vector (a, b, c) be in the null space of T? What is the nullity of T?


1
Expert's answer
2021-01-04T20:16:10-0500

T:F3F3(x1,x2,x3)(x1x2+2x3,2x1+x2,x12x2+2x3)T:F_3\rightarrow F_3\\ (x_1,x_2,x_3)\rightarrow (x_1 − x_2 + 2x_3 ,2x_1 + x_2 , − x_1 − 2 x_2 + 2x_3 )

=[112210122]×[x1x2x3]=AX  [let]=\begin{bmatrix}1&-1&2\\2&1&0\\-1&-2&2\end{bmatrix}\times\begin{bmatrix}x_1\\x_2\\x_3\end{bmatrix}=AX \;[let]

where A=[112210122],X=[x1x2x3]A=\begin{bmatrix}1&-1&2\\2&1&0\\-1&-2&2\end{bmatrix},X=\begin{bmatrix}x_1\\x_2\\x_3\end{bmatrix}

i.e. T(X)=AXT(X)=AX


(i)

Let X,YF3,cCX,Y\in F_3, c\in \mathbb{C}

T(aX+Y)=A(aX+Y)=aAX+AY=aT(X)+T(Y)\therefore T(aX+Y)=A(aX+Y)=aAX+AY=aT(X)+T(Y)

Hence TT is a linear transformation.


(ii)

Claim:- {A1=[121],A2=[112]}\{A_1=\begin{bmatrix}1\\2\\-1\end{bmatrix},A_2=\begin{bmatrix}-1\\1\\-2\end{bmatrix}\} is a Basis of Im(T)Im(T) .

Proof:-

Any element of Im(T)Im(T) can be expressed by columns of A    i.e.  A1,A2,A3A \;\;i.e. \;A_1, A_2,A_3

Im(T)=span({A1,A2,A3})\therefore Im(T)=span(\{A_1, A_2,A_3\})

A3=23A143A2A_3=\frac{2}{3}A_1-\frac{4}{3}A_2

A3span({A1,A2})\therefore A_3\in span(\{A_1,A_2\})

span({A1,A2})=span({A1,A2,A3})=Im(T)\Rightarrow span(\{A_1,A_2\})= span(\{A_1,A_2,A_3\})=Im(T) ...(1)

Now A1,A2A_1,A_2 are independent [ as no  cCA1=cA2\exists no\;c\in \mathbb{C}\ni A_1=cA_2 ] ...(2)


So, from above two facts, we can conclude that ,

{[121],[112]}\{\begin{bmatrix}1\\2\\-1\end{bmatrix},\begin{bmatrix}-1\\1\\-2\end{bmatrix}\} is a Basis of Im(T)Im(T) ...(Proved)


Therefore rank(T)=dim(Im(T))=2\pmb{rank(T)=dim(Im(T))=2}


(iii)

Null Space of   T=Null(T)={XF3AX=0}\;T=Null(T)=\{X\in F_3 | AX=0\}

So,

          AX=0[112210122][x1x2x3]=0[102/3014/3000][x1x2x3]=0x1+2x33=0,  x24x33=0\;\;\;\;\;AX=0\\ \Rightarrow \begin{bmatrix}1&-1&2\\2&1&0\\-1&-2&2\end{bmatrix}\begin{bmatrix}x_1\\x_2\\x_3\end{bmatrix}=0\\ \Rightarrow \begin{bmatrix}1&0&2/3\\0&1&-4/3\\0&0&0\end{bmatrix}\begin{bmatrix}x_1\\x_2\\x_3\end{bmatrix}=0\\ \Rightarrow x_1+\frac{2x_3}{3}=0, \;x_2-\frac{4x_3}{3}=0

[let x3=kx_3=k]

X{k[2/34/31]:kC}\Rightarrow X\in\{k\begin{bmatrix}-2/3\\4/3\\1\end{bmatrix}: k\in \mathbb{C}\}

Null(T)={k[2/34/31]:kC}\therefore Null(T)=\{k\begin{bmatrix}-2/3\\4/3\\1\end{bmatrix}: k\in \mathbb{C}\}

Clearly Null(T) is generated by 1 element.

Hence, Nullity    of    T=dim(Null(T))=1\pmb{Nullity\;\;of \;\;T=dim(Null(T))=1}.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS