T:F3→F3(x1,x2,x3)→(x1−x2+2x3,2x1+x2,−x1−2x2+2x3)
=⎣⎡12−1−11−2202⎦⎤×⎣⎡x1x2x3⎦⎤=AX[let]
where A=⎣⎡12−1−11−2202⎦⎤,X=⎣⎡x1x2x3⎦⎤
i.e. T(X)=AX
(i)
Let X,Y∈F3,c∈C
∴T(aX+Y)=A(aX+Y)=aAX+AY=aT(X)+T(Y)
Hence T is a linear transformation.
(ii)
Claim:- {A1=⎣⎡12−1⎦⎤,A2=⎣⎡−11−2⎦⎤} is a Basis of Im(T) .
Proof:-
Any element of Im(T) can be expressed by columns of Ai.e.A1,A2,A3
∴Im(T)=span({A1,A2,A3})
A3=32A1−34A2
∴A3∈span({A1,A2})
⇒span({A1,A2})=span({A1,A2,A3})=Im(T) ...(1)
Now A1,A2 are independent [ as ∃noc∈C∋A1=cA2 ] ...(2)
So, from above two facts, we can conclude that ,
{⎣⎡12−1⎦⎤,⎣⎡−11−2⎦⎤} is a Basis of Im(T) ...(Proved)
Therefore rank(T)=dim(Im(T))=2rank(T)=dim(Im(T))=2
(iii)
Null Space of T=Null(T)={X∈F3∣AX=0}
So,
AX=0⇒⎣⎡12−1−11−2202⎦⎤⎣⎡x1x2x3⎦⎤=0⇒⎣⎡1000102/3−4/30⎦⎤⎣⎡x1x2x3⎦⎤=0⇒x1+32x3=0,x2−34x3=0
[let x3=k]
⇒X∈{k⎣⎡−2/34/31⎦⎤:k∈C}
∴Null(T)={k⎣⎡−2/34/31⎦⎤:k∈C}
Clearly Null(T) is generated by 1 element.
Hence, NullityofT=dim(Null(T))=1NullityofT=dim(Null(T))=1.
Comments