Let T be the linear operator on R
3 defined by
T(x1, x2, x3) = (3x1, x1 − x2 , 2x1 + x2 + x3 )
Is T invertible? If so, find a rule for T −1 like the one which defines T.
Given that ,
"T:\\R^3 \\rightarrow \\R^3" is a linear transformation defined by
"T(x_1,x_2,x_3)=(3x_1,x_1-x_2,2x_1+x_2+x_3)"
"\\therefore" We can define , "T=\\begin{pmatrix}\n3 &0&0 \\\\\n1&-1&0\\\\\n2&1&1\n\\end{pmatrix}" with respect to usual basis .
"\\therefore Det(T)=\\begin{vmatrix}\n3&0&0 \\\\\n1&-1&0\\\\\n2&1&1\n\\end{vmatrix}" "=-3"
"\\therefore T" is invertible .
Now , we have to find "T^{-1}" .
For "T^{-1}" , first we have to find adj("T" ).
"adj(T)=\\begin{pmatrix}\n-1&-1 &3 \\\\\n0&3&-3 \\\\\n0&0&-3\n\\end{pmatrix}" .
"\\therefore T^{-1}=\\frac{(adjT)'}{Det(T)}" "=\\frac{1}{-3} \\begin{pmatrix}\n-1&0&0\\\\\n-1&3&0 \\\\\n3&-3&-3\n\\end{pmatrix}"
"=\\begin{pmatrix}\n\\frac{1}{3}&0&0 \\\\\n\\frac{1}{3}&-1&0 \\\\\n-1&1&1\n\\end{pmatrix}"
"\\therefore T^{-1}:\\R^3\\rightarrow \\R^3" defined by
"T^{-1}(x_1,x_2,x_3)=(\\frac{x_1}{3},\\frac{x_1}{3}-x_2,-x_1+x_2+x_3)"
Comments
Leave a comment