Question #153650

Let T be the linear operator on R


3 defined by


T(x1, x2, x3) = (3x1, x1 − x2 , 2x1 + x2 + x3 )

Is T invertible? If so, find a rule for T −1 like the one which defines T.


1
Expert's answer
2021-01-04T20:18:56-0500

Given that ,

T:R3R3T:\R^3 \rightarrow \R^3 is a linear transformation defined by

T(x1,x2,x3)=(3x1,x1x2,2x1+x2+x3)T(x_1,x_2,x_3)=(3x_1,x_1-x_2,2x_1+x_2+x_3)


\therefore We can define , T=(300110211)T=\begin{pmatrix} 3 &0&0 \\ 1&-1&0\\ 2&1&1 \end{pmatrix} with respect to usual basis .


Det(T)=300110211\therefore Det(T)=\begin{vmatrix} 3&0&0 \\ 1&-1&0\\ 2&1&1 \end{vmatrix} =3=-3


T\therefore T is invertible .

Now , we have to find T1T^{-1} .

For T1T^{-1} , first we have to find adj(TT ).


adj(T)=(113033003)adj(T)=\begin{pmatrix} -1&-1 &3 \\ 0&3&-3 \\ 0&0&-3 \end{pmatrix} .


T1=(adjT)Det(T)\therefore T^{-1}=\frac{(adjT)'}{Det(T)} =13(100130333)=\frac{1}{-3} \begin{pmatrix} -1&0&0\\ -1&3&0 \\ 3&-3&-3 \end{pmatrix}


=(13001310111)=\begin{pmatrix} \frac{1}{3}&0&0 \\ \frac{1}{3}&-1&0 \\ -1&1&1 \end{pmatrix}


T1:R3R3\therefore T^{-1}:\R^3\rightarrow \R^3 defined by

T1(x1,x2,x3)=(x13,x13x2,x1+x2+x3)T^{-1}(x_1,x_2,x_3)=(\frac{x_1}{3},\frac{x_1}{3}-x_2,-x_1+x_2+x_3)


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS