The matrix of the quadratic form is
Find the eigenvalues and eigenvectors of A
"\\begin{vmatrix}\n 1-\\lambda & 1 & 3 \\\\\n 1 & 5-\\lambda & 1 \\\\\n 3 & 1 & 1-\\lambda \\\\\n\\end{vmatrix}=(1-\\lambda)\\begin{vmatrix}\n 5-\\lambda & 1 \\\\\n 1 & 1-\\lambda\n\\end{vmatrix}"
"-(1)\\begin{vmatrix}\n 1 & 1 \\\\\n 3 & 1-\\lambda\n\\end{vmatrix}+(3)\\begin{vmatrix}\n 1 & 5-\\lambda \\\\\n 3 & 1\n\\end{vmatrix}"
"=(1-\\lambda)^2(5-\\lambda)-1+\\lambda-1+\\lambda+3+3-45+9\\lambda"
"=-\\lambda^3+7\\lambda^2-36"
This is a characteristic polynomial.
Solve the equation
"-\\lambda^2(\\lambda-6)+(\\lambda-6)(\\lambda+6)=0"
"-(\\lambda-6)(\\lambda-3)(\\lambda+2)=0"
The roots are: "\\lambda_1=6,\\lambda_2=3,\\lambda_3=-2."
These are the eigenvalues.
Find the eigenvectors.
"\\lambda_1=6"
"R_2=R_2+(1\/5)R_1"
"R_3=R_3+(3\/5)R_1"
"R_3=R_3+(2)R_2"
"R_2=(-5\/4)R_2"
"R_1=R_1-R_2"
"R_1=(-1\/5)R_1"
Solve the matrix equation
If we take "v_3=t," then "v_1=t,v_2=2t,v_3=t."
"\\lambda_2=3"
"\\begin{bmatrix}\n 1-\\lambda & 1 & 3 \\\\\n 1 & 5-\\lambda & 1 \\\\\n 3 & 1 & 1-\\lambda \\\\\n\\end{bmatrix}=\\begin{bmatrix}\n -2 & 1 & 3 \\\\\n 1 & 2 & 1 \\\\\n 3 & 1 & -2 \\\\\n\\end{bmatrix}""R_2=R_2+(1\/2)R_1"
"\\begin{bmatrix}\n -2 & 1 & 3 \\\\\n 0 & 5\/2 & 5\/2 \\\\\n 3 & 1 & -2 \\\\\n\\end{bmatrix}""R_3=R_3+(3\/2)R_1"
"\\begin{bmatrix}\n -2 & 1 & 3 \\\\\n 0 & 5\/2 & 5\/2 \\\\\n 0 & 5\/2 & 5\/2 \\\\\n\\end{bmatrix}""R_3=R_3-R_2"
"\\begin{bmatrix}\n -2 & 1 & 3 \\\\\n 0 & 5\/2 & 5\/2 \\\\\n 0 & 0 & 0 \\\\\n\\end{bmatrix}""R_2=(2\/5)R_2"
"\\begin{bmatrix}\n -2 & 1 & 3 \\\\\n 0 & 1 & 1 \\\\\n 0 & 0 & 0 \\\\\n\\end{bmatrix}""R_1=R_1-R_2"
"\\begin{bmatrix}\n -2 & 0 & 2 \\\\\n 0 & 1 & 1 \\\\\n 0 & 0 & 0 \\\\\n\\end{bmatrix}""R_1=(-1\/2)R_1"
"\\begin{bmatrix}\n 1 & 0 & -1 \\\\\n 0 & 1 & 1 \\\\\n 0 & 0 & 0 \\\\\n\\end{bmatrix}"Solve the matrix equation
If we take "v_3=t," then "v_1=t,v_2=-t,v_3=t."
"\\text{v}=\\begin{bmatrix}\n t \\\\\n -t \\\\\n t\n\\end{bmatrix}=\\begin{bmatrix}\n 1 \\\\\n -1 \\\\\n 1\n\\end{bmatrix}t""\\lambda_3=-2"
"\\begin{bmatrix}\n 1-\\lambda & 1 & 3 \\\\\n 1 & 5-\\lambda & 1 \\\\\n 3 & 1 & 1-\\lambda \\\\\n\\end{bmatrix}=\\begin{bmatrix}\n 3 & 1 & 3 \\\\\n 1 & 7 & 1 \\\\\n 3 & 1 & 3 \\\\\n\\end{bmatrix}""R_2=R_2-(1\/3)R_1"
"\\begin{bmatrix}\n 3 & 1 & 3 \\\\\n 0 & 20\/3 & 0 \\\\\n 3 & 1 & 3 \\\\\n\\end{bmatrix}""R_3=R_3-R_1"
"\\begin{bmatrix}\n 3 & 1 & 3 \\\\\n 0 & 20\/3 & 0 \\\\\n 0 & 0 & 0 \\\\\n\\end{bmatrix}""R_2=(3\/20)R_2"
"\\begin{bmatrix}\n 3 & 1 & 3 \\\\\n 0 & 1 & 0 \\\\\n 0 & 0 & 0 \\\\\n\\end{bmatrix}""R_1=R_1-R_2"
"\\begin{bmatrix}\n 3 & 0 & 3 \\\\\n 0 & 1 & 0 \\\\\n 0 & 0 & 0 \\\\\n\\end{bmatrix}""R_1=(1\/3)R_1"
"\\begin{bmatrix}\n 1 & 0 & 1 \\\\\n 0 & 1 & 0 \\\\\n 0 & 0 & 0 \\\\\n\\end{bmatrix}"Solve the matrix equation
If we take "v_3=t," then "v_1=-t,v_2=0,v_3=t."
"\\text{v}=\\begin{bmatrix}\n -t \\\\\n 0 \\\\\n t\n\\end{bmatrix}=\\begin{bmatrix}\n -1 \\\\\n 0 \\\\\n 1\n\\end{bmatrix}t"The Normalized matrix
"N^T=\\begin{bmatrix}\n 1\/\\sqrt{6} & 2\/\\sqrt{6} & 1\/\\sqrt{6} \\\\\n 1\/\\sqrt{3} & -1\/\\sqrt{3} & 1\/\\sqrt{3} \\\\\n -1\/\\sqrt{2} & 0 & 1\/\\sqrt{2} \\\\\n\\end{bmatrix}"
"\\begin{bmatrix}\n 1\/\\sqrt{6} & 2\/\\sqrt{6} & 1\/\\sqrt{6} \\\\\n 1\/\\sqrt{3} & -1\/\\sqrt{3} & 1\/\\sqrt{3} \\\\\n -1\/\\sqrt{2} & 0 & 1\/\\sqrt{2} \\\\\n\\end{bmatrix}A\\begin{bmatrix}\n 1\/\\sqrt{6} & 1\/\\sqrt{3} & -1\/\\sqrt{2} \\\\\n 2\/\\sqrt{6} & -1\/\\sqrt{3} & 0 \\\\\n 1\/\\sqrt{6} & 1\/\\sqrt{3} & 1\/\\sqrt{2} \\\\\n\\end{bmatrix}="
"=\\begin{bmatrix}\n 6 & 0 & 0 \\\\\n 0 & 3 & 0 \\\\\n 0 & 0 & -2 \\\\\n\\end{bmatrix}"
"\\begin{bmatrix}\n y_1 & y_2 & y_3\n\\end{bmatrix}\\begin{bmatrix}\n 6 & 0 & 0 \\\\\n 0 & 3 & 0 \\\\\n 0 & 0 & -2 \\\\\n\\end{bmatrix}\\begin{bmatrix}\n y_1 \\\\\n y_2 \\\\\n y_3\n\\end{bmatrix}="
"=6y_1^2+3y_2^2-2y_3^2"
which is the required canonical form.
"Rank=3" (the number of non-zero eigenvalues).
"Index=2" (the number of positive eigenvalues).
"Signature=2-1=1" (the difference between the number of positive eigenvalues and the number of negative eigenvalues ).
Nature: the eigenvalues are "6>0,3>0,-2<0." Therefore the given quadratic form is indefinite in nature.
Comments
Leave a comment