Question #152789
True or false and give reason for your answer


i) If all the Eigen values of a matrix are real, then the
matrix must be symmetric.
ii) If V and W are real vector spaces, with T : V --> W
being a linear transformation then V/kerT isomorphic to W
iii) There are at least three different unitary matrices of order 2.
iv) There are two subspaces U and W of R3 such that U(intersection) W is empty.
v) If the determinant of a matrix is zero, then the matrix cannot be diagonalised.
1
Expert's answer
2020-12-25T15:21:52-0500

i) False

Reason:-

Let a matrix A=[1200]A = \begin{bmatrix}1&2\\0&0\end{bmatrix}

Clearly A is not symmetric matrix.

Now let λ\lambda be an eigen value of A.

So, det(λIA)=0det(\lambda I-A)=0 λ=0\Rightarrow \lambda=0 or, 1

\therefore Eigen values of A are real but A is not symmetric.


ii) False

Reason:-


Let V=W=R2V=W=R^2

And T:VWT: V\to W such that T([ab]T)=[a0]TT(\begin{bmatrix}a\\b\end{bmatrix} ^T)=\begin{bmatrix}a\\0\end{bmatrix} ^T

It is easy to see that TT is well-defined and TT is a Linear Transformation.

[As v1=v2T(v1)=T(v2)v_1=v_2 \Rightarrow T(v_1)=T(v_2) and T(v1+cv2)=T(v1)+cT(v2)T(v_1+cv_2)=T(v_1)+cT(v_2)]


Now Im(T)={T(v):vV}={[a0]T:aIm(T) = \{T(v) : v\in V\} = \{\begin{bmatrix}a\\0\end{bmatrix}^T : a is a real number}\}

Clearly Im(T)WIm(T)<WIm(T) \subset W \Rightarrow |Im(T)|<|W|


Now, From 1st1st isomorphism theorem,

V/ker(T)Im(T)V/ker(T) \cong Im(T)

V/ker(T)=Im(T)<W\Rightarrow |V/ker(T)| = |Im(T)| < |W|

V/ker(T)<W\Rightarrow |V/ker(T)| < |W|


\exists no bijection between V/ker(T)V/ker(T) and WW

So, V/ker(T)V/ker(T) is not isomorphic to WW


iii) True

Reason :-

Let 3 matrices of order 2 are A, B and C, where

A=[1001]A = \begin{bmatrix}1&0\\0&1\end{bmatrix} , B=[0ii0]B = \begin{bmatrix}0&i\\i&0\end{bmatrix} and C=[i/23/23/2i/2]C = \begin{bmatrix}i/2&\sqrt{3}/2\\\sqrt{3}/2&i/2\end{bmatrix}

It is easy to check, A(Aθ)T=B(Bθ)T=C(Cθ)T=IA(A^\theta)^T=B(B^\theta)^T=C(C^\theta)^T=I

Where MθM^\theta is conjugate of M.

A,B,C\therefore A,B,C are Unitary.


So, A,B,C are 3 different unitary matrices of order 2.

\therefore \exists at least 3 different unitary matrices of order 2.


iv) False

Reason :-

Let U,WU, W are two subspaces of R3\R^3 .

let uUu\in U and c be a scalar. cuU\Rightarrow cu\in U

Take c=0c=0 0U\therefore 0\in U

Similarly 0W0\in W

So, 0UW0\in U\cap W

\therefore UWU\cap W is not empty


v) False

Reason :-

Let A=[1200]A = \begin{bmatrix}1&2\\0&0\end{bmatrix} be a matrix of order 2.

Clearly det(A)=0det(A)=0


Let P=[0112]P = \begin{bmatrix}0&1\\1&2\end{bmatrix}


P1=[2110]\therefore P^{-1} = \begin{bmatrix}-2&1\\1&0\end{bmatrix}


Now PAP1=[0112][1200][2110]=[0001]PAP^{-1}= \begin{bmatrix}0&1\\1&2\end{bmatrix}\begin{bmatrix}1&2\\0&0\end{bmatrix}\begin{bmatrix}-2&1\\1&0\end{bmatrix}=\begin{bmatrix}0&0\\0&1\end{bmatrix}

PAP1\therefore PAP^{-1} is a diagonal matrix. A\Rightarrow A is diagonalizable.


So, the Determinant of AA is but AA is diagonalizable.



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS