Characteristics equation is ∣A−λI∣=0.
∣∣12101−13−11∣∣=0
(1−λ)[(1−λ)2−1]+3[−2−(1−λ)]=0(1−λ)3−1+λ+3(−3+λ)=0(1−λ)3−1+λ−9+3λ=0(1−λ)3+4λ−10=01−3λ+3λ2−λ3+4λ−10=0−λ3+3λ2+λ−9=0λ3−3λ2−λ+9=0
By Cayley-Hamilton Theorem, A3−3A2−A+9=0.
⟹A3−3A2=A−9I.
A6−5A5+8A4−2A3−9A2+31A−31I=A6−3A5−2A5+6A4+2A4−6A3+4A3−12A2+3A2+31A−36I=A3(A3−3A2)−2A2(A3−3A2)+2A(A3−3A2)+4(A3−3A2)+3A2+31A−36I=(A3−3A2)(A3−2A2+2A+4I)+3A2+31A−36I=(A3−3A2)(A3−3A2+A2−A+3A+9I−5I)+3A2+31A−36I=(A3−3A2)(A3−3A2−A+9I+A2+3A−5I)+3A2+31A−36I
But, (A3−3A2)=A−9I,A3−3A2−A+9I=0
=(A−9I)(0+A2+3A−5)+3A2+31A−36I=A3+3A2−5A−9A2−27A+45I+3A2+31A−36I=A3−3A2−A+9I=0
Comments
Leave a comment