Answer to Question #151811 in Linear Algebra for adithya kumar

Question #151811
given that a=[
1 0 3
2 1 -1
1 -1 1 ],compute the value of (a^6-5a^5+8a^4-2a^3-9a^2+31a-36 I ) using cayley-hamilton theorem
1
Expert's answer
2020-12-20T18:36:08-0500

Characteristics equation is AλI=0|A-\lambda I|=0.

103211111=0\begin{vmatrix} 1&0&3 \\ 2&1&-1\\ 1&-1&1\\ \end{vmatrix}=0

(1λ)[(1λ)21]+3[2(1λ)]=0(1λ)31+λ+3(3+λ)=0(1λ)31+λ9+3λ=0(1λ)3+4λ10=013λ+3λ2λ3+4λ10=0λ3+3λ2+λ9=0λ33λ2λ+9=0(1-\lambda) [(1-\lambda) ^2-1]+3[-2-(1-\lambda) ]=0\\ (1-\lambda) ^3-1+\lambda+3(-3+\lambda) =0\\ (1-\lambda) ^3-1+\lambda-9+3\lambda=0\\ (1-\lambda)^3+4\lambda-10=0\\ 1-3\lambda+3\lambda^2-\lambda^3+4\lambda-10=0\\ -\lambda^3+3\lambda^2+\lambda-9=0\\ \lambda^3-3\lambda^2-\lambda+9=0

By Cayley-Hamilton Theorem, A33A2A+9=0.A^3-3A^2-A+9=0.

    A33A2=A9I.\implies A^3-3A^2=A-9I.


A65A5+8A42A39A2+31A31I=A63A52A5+6A4+2A46A3+4A312A2+3A2+31A36I=A3(A33A2)2A2(A33A2)+2A(A33A2)+4(A33A2)+3A2+31A36I=(A33A2)(A32A2+2A+4I)+3A2+31A36I=(A33A2)(A33A2+A2A+3A+9I5I)+3A2+31A36I=(A33A2)(A33A2A+9I+A2+3A5I)+3A2+31A36IA^6-5A^5+8A^4-2A^3-9A^2+31A-31I\\ =A^6-3A^5-2A^5+6A^4+2A^4-6A^3+4A^3-12A^2+3A^2+31A-36I\\ =A^3(A^3-3A^2)-2A^2(A^3-3A^2)+2A(A^3-3A^2)+4(A^3-3A^2)+3A^2+31A-36I\\ =(A^3-3A^2)(A^3-2A^2+2A+4I)+3A^2+31A-36I\\ =(A^3-3A^2)(A^3-3A^2+A^2-A+3A+9I-5I)+3A^2+31A-36I\\ =(A^3-3A^2)(A^3-3A^2-A+9I+A^2+3A-5I)+3A^2+31A-36I\\

But, (A33A2)=A9I,A33A2A+9I=0(A^3-3A^2)=A-9I, A^3-3A^2-A+9I=0

=(A9I)(0+A2+3A5)+3A2+31A36I=A3+3A25A9A227A+45I+3A2+31A36I=A33A2A+9I=0=(A-9I)(0+A^2+3A-5)+3A^2+31A-36I\\ =A^3+3A^2-5A-9A^2-27A+45I+3A^2+31A-36I\\ =A^3-3A^2-A+9I\\ =0


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment