Solution: Given that "T(x, y, z)=(2x+y-2z, 2x+3y-4z, x + y-z)"
First we find matrix representation of T relative to the standard basis B={(1,0,0),(0,1,0),(0,0,1)}
So matrix obtained is "A=\\left[\\begin{array}{ccc}2&1&-2\\\\2&3&-4\\\\1&1&-1\\\\\\end{array}\\right]"
To find eigenvalues , we consider characteristic equation,
"\\left|\\begin{array}{ccc}2-\\lambda&1&-2\\\\2&3-\\lambda&-4\\\\1&1&-1-\\lambda\\\\\\end{array}\\right|=0"
we know that characteristic equation is given by
"\\lambda^3-(Trace~of~A )\\lambda^2+(Sum ~of~minors~along~diagonal)\\lambda-det(A)=0"
Trace of A=sum of diagonal elements=2+3-1=4
Sum of minors along diagonal=1+0+4=5
det(A)=2
"\\therefore\\lambda^3-(Trace~of~A )\\lambda^2+(Sum ~of~minors~along~diagonal)\\lambda-det(A)=0" is written as
"\\lambda^3-(4 )\\lambda^2+(5)\\lambda-2=0"
"\\lambda^3-4 \\lambda^2+5\\lambda-2=0" is called the characteristic equation.
Put "\\lambda=1" the characteristic equation satisfies. Therefore \lambda=1 is one of the eigen value of the characteristic equation.
Now we find other eigen values by synthetic division method.
1|1 -4 5 -2
| 1 -3 2
-------------------------------------------
| 1 -3 2 0
"\\lambda^2-3\\lambda+2=0"
"\\lambda^2-2\\lambda-\\lambda+2=0"
"\\lambda(\\lambda-2)-1(\\lambda-2)=0"
"(\\lambda-1)(\\lambda-2)=0"
"\\lambda=1,\\lambda=2"
Therefore the eigenvalues are "\\lambda=1,1,2"
To find eigenspace corresponding to "\\lambda=1:"
Put "\\lambda=1" in the equation "(A-\\lambda I)X=0~ where ~X ~is vector ~X=\\left[\\begin{array}{ccc}x\\\\y\\\\z\\\\\\end{array}\\right]"
"\\therefore\\left[\\begin{array}{ccc}2-\\lambda&1&-2\\\\2&3-\\lambda&-4\\\\1&1&-1-\\lambda\\\\\\end{array}\\right]\\left[\\begin{array}{ccc}x\\\\y\\\\z\\\\\\end{array}\\right] =\\left[\\begin{array}{ccc}0\\\\0\\\\0\\\\\\end{array}\\right]"
"\\therefore\\left[\\begin{array}{ccc}1&1&-2\\\\2&2&-4\\\\1&1&-2\\\\\\end{array}\\right]\\left[\\begin{array}{ccc}x\\\\y\\\\z\\\\\\end{array}\\right] =\\left[\\begin{array}{ccc}0\\\\0\\\\0\\\\\\end{array}\\right]"
Solving this by by Gauss elimination method, we get "y~and~z" as free variable.
"\\therefore X=\\left[\\begin{array}{ccc}x\\\\y\\\\z\\\\\\end{array}\\right]=\\left[\\begin{array}{ccc}-y+2z\\\\y\\\\z\\\\\\end{array}\\right]=y\\left[\\begin{array}{ccc}-1\\\\1\\\\0\\\\\\end{array}\\right] +z\\left[\\begin{array}{ccc}2\\\\0\\\\1\\\\\\end{array}\\right] =y[v1]+z[v2]"
"Where~v1=\\left[\\begin{array}{ccc}-1\\\\1\\\\0\\\\\\end{array}\\right] ~and~v2=\\left[\\begin{array}{ccc}2\\\\0\\\\1\\\\\\end{array}\\right]" "~are~two~eigen~vectors~corresponding~ to~\\lambda=1"
To find eigenspace corresponding to "\\lambda=2:"
Put "\\lambda=2" in the equation "(A-\\lambda I)X=0~ where ~X ~is vector ~X=\\left[\\begin{array}{ccc}x\\\\y\\\\z\\\\\\end{array}\\right]"
"\\therefore\\left[\\begin{array}{ccc}2-\\lambda&1&-2\\\\2&3-\\lambda&-4\\\\1&1&-1-\\lambda\\\\\\end{array}\\right]\\left[\\begin{array}{ccc}x\\\\y\\\\z\\\\\\end{array}\\right] =\\left[\\begin{array}{ccc}0\\\\0\\\\0\\\\\\end{array}\\right]"
"\\therefore\\left[\\begin{array}{ccc}0&1&-2\\\\2&1&-4\\\\1&1&-3\\\\\\end{array}\\right]\\left[\\begin{array}{ccc}x\\\\y\\\\z\\\\\\end{array}\\right] =\\left[\\begin{array}{ccc}0\\\\0\\\\0\\\\\\end{array}\\right]"
Solving this by by Gauss elimination method, we get "z" as free variable.
"\\therefore X=\\left[\\begin{array}{ccc}x\\\\y\\\\z\\\\\\end{array}\\right]=\\left[\\begin{array}{ccc}z\\\\2z\\\\z\\\\\\end{array}\\right]=z\\left[\\begin{array}{ccc}1\\\\2\\\\1\\\\\\end{array}\\right] =z[v3]"
"Where~v3=\\left[\\begin{array}{ccc}1\\\\2\\\\1\\\\\\end{array}\\right] ~is~the~eigen~vectors~corresponding~ to~\\lambda=2" .
Now, to check T is diagonalizable :
To check T is diagonalizable or not, it is sufficient to prove that "AP=PD"
"where~A=\\left[\\begin{array}{ccc}2&1&-2\\\\2&3&-4\\\\1&1&-1\\\\\\end{array}\\right],~P=[v1~v2~v3]=\\left[\\begin{array}{ccc}-1&2&1\\\\1&0&2\\\\0&1&1\\\\\\end{array}\\right]"
"~and~D=\\left[\\begin{array}{ccc}1&0&0\\\\0&1&0\\\\0&0&2\\\\\\end{array}\\right]=diagonal ~elements~ of~eigen~values."
Now, "AP=\\left[\\begin{array}{ccc}2&1&-2\\\\2&3&-4\\\\1&1&-1\\\\\\end{array}\\right]\\left[\\begin{array}{ccc}-1&2&1\\\\1&0&2\\\\0&1&1\\\\\\end{array}\\right] ~~~~~~~~~~~~~~~~~[matrix~ multiplication]"
"=\\left[\\begin{array}{ccc}-1&2&2\\\\1&0&4\\\\0&1&2\\\\\\end{array}\\right]..................................(1)"
"PD=\\left[\\begin{array}{ccc}-1&2&1\\\\1&0&2\\\\0&1&1\\\\\\end{array}\\right]\\left[\\begin{array}{ccc}1&0&0\\\\0&1&0\\\\0&0&2\\\\\\end{array}\\right]"
"=\\left[\\begin{array}{ccc}-1&2&2\\\\1&0&4\\\\0&1&2\\\\\\end{array}\\right]..................................(2)"
"from~(1)~and~(2)~,AP=PD"
Hence T is diagonalizable.
Comments
Leave a comment