Question #151740
Let T: R^5 tends to R^3 defined by T(a, b, c, d, e)=(a+2b+2c+d+e, a+2b+3c+2d-e, 3a+6b+8c+5d-e). Find the basis and the dimension of the kernel and the image of T
1
Expert's answer
2020-12-20T18:00:58-0500

Solution: Given that , T(a, b, c, d, e)=(a+2b+2c+d+e, a+2b+3c+2d-e, 3a+6b+8c+5d-e).

This can be written as T[abcde]=[122111232136851][abcde]T\left[\begin{array}{c}a\\b\\c\\d\\e\\\end{array}\right]=\left[\begin{array}{c}1&2&2&1&1\\1&2&3&2&-1\\3&6&8&5&-1\\\end{array}\right]\left[\begin{array}{c}a\\b\\c\\d\\e\\\end{array}\right]

We write this as T(v)=Av where v=[abcde]and A=[122111232136851]T(v)=Av ~where~v=\left[\begin{array}{c}a\\b\\c\\d\\e\\\end{array}\right] and ~A=\left[\begin{array}{c}1&2&2&1&1\\1&2&3&2&-1\\3&6&8&5&-1\\\end{array}\right]

To find ker(T):

The ker(T)ker(T) is the same as the null space of the matrix AA (i.e.nullA)(i.e. null A) . Therefore we find reduced row echelon form of the matrix AA

rref(A)=[122111232136851]=[120150011200000]\therefore rref(A)=\left[\begin{array}{c}1&2&2&1&1\\1&2&3&2&-1\\3&6&8&5&-1\\\end{array}\right]=\left[\begin{array}{c}1&2&0&-1&5\\0&0&1&1&-2\\0&0&0&0&0\\\end{array}\right]


Therefore rewriting the system in terms of free variables b,d,e~b,d,e, we have

[abcde]=[2b+d5ebd+2ede]=b[21000]+d[10110]+e[50201]\left[\begin{array}{c}a\\b\\c\\d\\e\\\end{array}\right]=\left[\begin{array}{c}-2b+d-5e\\b\\-d+2e\\d\\e\\\end{array}\right]=b\left[\begin{array}{c}-2\\1\\0\\0\\0\\\end{array}\right]+d\left[\begin{array}{c}1\\0\\-1\\1\\0\\\end{array}\right]+e\left[\begin{array}{c}-5\\0\\2\\0\\1\\\end{array}\right]


The set[(2,1,0,0,0),(1,0,1,1,0),(5,0,2,0,1)][(-2,1,0,0,0),(1,0,-1,1,0),(-5,0,2,0,1)] spans NullANull A and it is linearly independent set, So the set {(-2,1,0,0,0),(1,0,-1,1,0),(-5,0,2,0,1)} forms a basis of ker(T)\mathbf{ker(T)}


Dimension of ker(T) : We know that "The dimension of Null A is the number of free variables in the equation Ax=0Ax=0 "

Here, there are two leading variables a and ca ~and ~c and three free variables b,d,eb,d,e .

Hence dim Null A =3

Hence dim [ ker (T)]=3


To find Image of T i.e. Im(T):

To identify vector that span Im(T), we identify the first and third columns as pivot columns(leading 1's) in rref(A). These columns are linearly independent and span col(A).

Im(T)=Col(A)=[113],[238]\therefore Im(T)=Col(A)=\left[\begin{array}{c}1\\1\\3\\\end{array}\right],\left[\begin{array}{c}2\\3\\8\\\end{array}\right]


Let B=Im(T)=[121338]Let~B=Im(T)=\left[\begin{array}{c}1&2\\1&3\\3&8\\\end{array}\right]


rref(B)=[100100]rref(B)=\left[\begin{array}{c}1&0\\0&1\\0&0\\\end{array}\right]

rewriting the rref(B) in vector matrix form

[ab]=a[10]+b[01]\Rightarrow \left[\begin{array}{c}a\\b\\\end{array}\right]=a\left[\begin{array}{c}1\\0\\\end{array}\right]+b\left[\begin{array}{c}0\\1\\\end{array}\right]

Therefore, the Im(T) is the xy plane.The set{(1,0),(0,1)}Span Null B and it is linearly independent set, So the set {(1,0),(0,1)} forms a basis of Im(T).

Dimension of Im(T) : We know that rank(A)=2 (non-zero rows of rref(A))

and we know that dim(Im(A)=rank(A)

dim(Im)=2\mathbf{\therefore dim(Im)=2}




Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS