The characteristics equation is "|A-\\lambda I|=0"
"\\begin{vmatrix}\n 3-\\lambda & 2\\\\\n -1 & \\lambda\n\\end{vmatrix}=0\\\\\n-\\lambda(3-\\lambda)+2=0\\\\\n-3\\lambda+\\lambda^2+2=0\\\\\n\\lambda^2-3\\lambda+2=0"
By Cayley-Hamilton Theorem,
"A^2-3A+2I=0\\\\\n\\implies A^2=3A-2I"
"A^7=A^4.A^3\\\\\nA^7=(A^2)^2.A^2.A\\\\\nA^7=(3A-2I) ^2.(3A-2I).A\\\\\nA^7=(9A^2-12A+4I)(3A^2-2A)\\\\\nA^7=(9(3A-2I)-12A+4I)(3(3A-3I)-2A) \\\\\nA^7=(27A-18I-12A+4I)(9A-6I-2A) \\\\\nA^7=(15A+4I)(7A-6I) \\\\\nA^7=(105A^2-188A+84I)\\\\\nA^7=(105(3A-2I)-188A+84I)\\\\\nA^7=315A-210A-188A+84I\\\\\nA^7=127A-126I\\\\\nA^7=127\\begin{pmatrix}\n 3&2 \\\\\n -1&0\n\\end{pmatrix}-126\\begin{pmatrix}\n 1&0 \\\\\n 0&1\n\\end{pmatrix}\\\\\nA^7=\\begin{pmatrix}\n 381&254\\\\\n -127&0\n\\end{pmatrix}-\\begin{pmatrix}\n 126&0 \\\\\n 0&126\n\\end{pmatrix}\\\\\nA^7=\\begin{pmatrix}\n255&254 \\\\\n -127&-126\n\\end{pmatrix}"
Comments
Leave a comment