Question #151607
Using Cayley — Hamilton theorem, evaluate A^(7) if A=[ 3 2
-1. 0 ]
1
Expert's answer
2020-12-21T18:59:47-0500

The characteristics equation is AλI=0|A-\lambda I|=0

3λ21λ=0λ(3λ)+2=03λ+λ2+2=0λ23λ+2=0\begin{vmatrix} 3-\lambda & 2\\ -1 & \lambda \end{vmatrix}=0\\ -\lambda(3-\lambda)+2=0\\ -3\lambda+\lambda^2+2=0\\ \lambda^2-3\lambda+2=0

By Cayley-Hamilton Theorem,

A23A+2I=0    A2=3A2IA^2-3A+2I=0\\ \implies A^2=3A-2I


A7=A4.A3A7=(A2)2.A2.AA7=(3A2I)2.(3A2I).AA7=(9A212A+4I)(3A22A)A7=(9(3A2I)12A+4I)(3(3A3I)2A)A7=(27A18I12A+4I)(9A6I2A)A7=(15A+4I)(7A6I)A7=(105A2188A+84I)A7=(105(3A2I)188A+84I)A7=315A210A188A+84IA7=127A126IA7=127(3210)126(1001)A7=(3812541270)(12600126)A7=(255254127126)A^7=A^4.A^3\\ A^7=(A^2)^2.A^2.A\\ A^7=(3A-2I) ^2.(3A-2I).A\\ A^7=(9A^2-12A+4I)(3A^2-2A)\\ A^7=(9(3A-2I)-12A+4I)(3(3A-3I)-2A) \\ A^7=(27A-18I-12A+4I)(9A-6I-2A) \\ A^7=(15A+4I)(7A-6I) \\ A^7=(105A^2-188A+84I)\\ A^7=(105(3A-2I)-188A+84I)\\ A^7=315A-210A-188A+84I\\ A^7=127A-126I\\ A^7=127\begin{pmatrix} 3&2 \\ -1&0 \end{pmatrix}-126\begin{pmatrix} 1&0 \\ 0&1 \end{pmatrix}\\ A^7=\begin{pmatrix} 381&254\\ -127&0 \end{pmatrix}-\begin{pmatrix} 126&0 \\ 0&126 \end{pmatrix}\\ A^7=\begin{pmatrix} 255&254 \\ -127&-126 \end{pmatrix}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS