The matrix associated to a generic minimal polynomial p(x)=a0+a1x+a2x2+⋯+an−1xn−1+anxnp(x)=a_0+a_1x+a_2x^2+\cdots +a_{n-1}x^{n-1}+a_nx^np(x)=a0+a1x+a2x2+⋯+an−1xn−1+anxn is given as;
A=(0−a0I−a)A=\begin{pmatrix} 0&-a_0 \\ I&-a \end{pmatrix}A=(0I−a0−a)
Where III is the (n−1)×(n−1)(n-1) \times (n-1)(n−1)×(n−1) identity matrix and a=(a1,⋯ ,an−1)Ta=(a_1,\cdots, a_{n-1})^Ta=(a1,⋯,an−1)T. A is an n×nn\times nn×n matrix.
So, for the question,
a0=8,a=(6,−5)T,I=(1001)a_0=8,a=(6,-5)^T, I=\begin{pmatrix} 1&0\\ 0&1 \end{pmatrix}a0=8,a=(6,−5)T,I=(1001)
A=(00−810−6015)A=\begin{pmatrix} 0&0&-8\\ 1&0&-6\\ 0&1&5\\ \end{pmatrix}A=⎝⎛010001−8−65⎠⎞
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments