The matrix associated to a generic minimal polynomial p(x)=a0+a1x+a2x2+⋯+an−1xn−1+anxn is given as; 
     A=(0I−a0−a)
Where I   is the (n−1)×(n−1) identity matrix and a=(a1,⋯,an−1)T. A is an n×n matrix. 
So, for the question,
    a0=8,a=(6,−5)T,I=(1001)  
      A=⎝⎛010001−8−65⎠⎞ 
Comments