Question #151787
Find a matrix A whose minimal polynomial is t^3-5t^2+6t+8
1
Expert's answer
2020-12-21T17:59:26-0500

The matrix associated to a generic minimal polynomial p(x)=a0+a1x+a2x2++an1xn1+anxnp(x)=a_0+a_1x+a_2x^2+\cdots +a_{n-1}x^{n-1}+a_nx^n is given as;


A=(0a0Ia)A=\begin{pmatrix} 0&-a_0 \\ I&-a \end{pmatrix}

Where II is the (n1)×(n1)(n-1) \times (n-1) identity matrix and a=(a1,,an1)Ta=(a_1,\cdots, a_{n-1})^T. A is an n×nn\times n matrix.


So, for the question,

a0=8,a=(6,5)T,I=(1001)a_0=8,a=(6,-5)^T, I=\begin{pmatrix} 1&0\\ 0&1 \end{pmatrix}


A=(008106015)A=\begin{pmatrix} 0&0&-8\\ 1&0&-6\\ 0&1&5\\ \end{pmatrix}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS