The matrix associated to a generic minimal polynomial "p(x)=a_0+a_1x+a_2x^2+\\cdots +a_{n-1}x^{n-1}+a_nx^n" is given as;
"A=\\begin{pmatrix}\n 0&-a_0 \\\\\n I&-a\n\\end{pmatrix}"
Where "I" is the "(n-1) \\times (n-1)" identity matrix and "a=(a_1,\\cdots, a_{n-1})^T". A is an "n\\times n" matrix.
So, for the question,
"a_0=8,a=(6,-5)^T, I=\\begin{pmatrix}\n 1&0\\\\\n 0&1\n\\end{pmatrix}"
"A=\\begin{pmatrix}\n 0&0&-8\\\\\n 1&0&-6\\\\\n 0&1&5\\\\\n\\end{pmatrix}"
Comments
Leave a comment