"A=\\begin{bmatrix}2&1&1\\\\1&1&-1\\\\3&-1&1\\end{bmatrix}"
Characteristic polynomial of A,
"det(A-\\lambda I)=0"
"\\Rightarrow det\\left(\\begin{bmatrix}2&1&1\\\\1&1&-1\\\\3&-1&1\\end{bmatrix} - \\lambda \\begin{bmatrix}1&0&0\\\\0&1&0\\\\0&0&1\\end{bmatrix}\\right)=0"
"\\Rightarrow det \\left(\\begin{bmatrix}2-\\lambda&1&1\\\\1&1-\\lambda&-1\\\\3&-1&1-\\lambda\\end{bmatrix}\\right)=0"
"\\Rightarrow (2-\\lambda)det\\left(\\begin{bmatrix}1-\\lambda&-1\\\\-1&1-\\lambda\\end{bmatrix}\\right)"
"-det\\left(\\begin{bmatrix}1&-1\\\\3&1-\\lambda\\end{bmatrix}\\right)"
"+det\\left(\\begin{bmatrix}1&1-\\lambda\\\\3&-1\\end{bmatrix}\\right)=0"
"\\Rightarrow \\left(2-\\lambda\\right)\\left(\\lambda^2-2\\lambda\\right)-\\left(-\\lambda+4\\right)+ \\left(3\\lambda-4\\right)=0"
"\\Rightarrow \\lambda^3-4\\lambda^2+8=0"
"\\therefore" Characteristic polynomial of A :- "\\lambda^3-4\\lambda^2+8=0"
Now,
"A^2= A\\times A =\\begin{bmatrix}2&1&1\\\\1&1&-1\\\\3&-1&1\\end{bmatrix}\\times \\begin{bmatrix}2&1&1\\\\1&1&-1\\\\3&-1&1\\end{bmatrix}"
"=\\begin{bmatrix}8&2&2\\\\0&3&-1\\\\8&1&5\\end{bmatrix}"
and,
"A^3=A^2\\times A=\\begin{bmatrix}8&2&2\\\\0&3&-1\\\\8&1&5\\end{bmatrix}\\times \\begin{bmatrix}2&1&1\\\\1&1&-1\\\\3&-1&1\\end{bmatrix}"
"=\\begin{bmatrix}24&8&8\\\\0&4&-4\\\\32&4&12\\end{bmatrix}"
Now, by Cayley-Hamilton theorem, putting "\\lambda=A" ,
"A^3-4A^2+8I=0_{3\\times3}"
"\\Rightarrow \\begin{bmatrix}24&8&8\\\\0&4&-4\\\\32&4&12\\end{bmatrix}-4\\begin{bmatrix}8&2&2\\\\0&3&-1\\\\8&1&5\\end{bmatrix}"
"+8\\begin{bmatrix}1&0&0\\\\0&1&0\\\\0&0&1\\end{bmatrix}=0_{3\\times3}"
"\\Rightarrow\\begin{bmatrix}0&0&0\\\\0&0&0\\\\0&0&0\\end{bmatrix}=0_{3\\times3}"
"\\therefore" Cayley-Hamilton Theorem Verified.
Now, by Cayley-Hamilton theorem,
"A^3-4A^2+8I=0_{3\\times3}"
"\\Rightarrow A(A^3-4A^2+8I)=A\\times0_{3\\times3}"
[ Multiplying both side by matrix "A" ]
"\\Rightarrow A^4-4A^3+8A=0_{3\\times3}"
"\\Rightarrow A^4 = 4A^3-8A"
"=4\\begin{bmatrix}24&8&8\\\\0&4&-4\\\\32&4&12\\end{bmatrix}-8\\begin{bmatrix}2&1&1\\\\1&1&-1\\\\3&-1&1\\end{bmatrix}" "=\\begin{bmatrix}80&24&24\\\\-8&8&-8\\\\104&24&40\\end{bmatrix}"
"\\therefore A^4=\\begin{bmatrix}80&24&24\\\\-8&8&-8\\\\104&24&40\\end{bmatrix}"
Comments
Leave a comment