A = [ 2 1 1 1 1 − 1 3 − 1 1 ] A=\begin{bmatrix}2&1&1\\1&1&-1\\3&-1&1\end{bmatrix} A = ⎣ ⎡ 2 1 3 1 1 − 1 1 − 1 1 ⎦ ⎤
Characteristic polynomial of A,
d e t ( A − λ I ) = 0 det(A-\lambda I)=0 d e t ( A − λ I ) = 0
⇒ d e t ( [ 2 1 1 1 1 − 1 3 − 1 1 ] − λ [ 1 0 0 0 1 0 0 0 1 ] ) = 0 \Rightarrow det\left(\begin{bmatrix}2&1&1\\1&1&-1\\3&-1&1\end{bmatrix} - \lambda \begin{bmatrix}1&0&0\\0&1&0\\0&0&1\end{bmatrix}\right)=0 ⇒ d e t ⎝ ⎛ ⎣ ⎡ 2 1 3 1 1 − 1 1 − 1 1 ⎦ ⎤ − λ ⎣ ⎡ 1 0 0 0 1 0 0 0 1 ⎦ ⎤ ⎠ ⎞ = 0
⇒ d e t ( [ 2 − λ 1 1 1 1 − λ − 1 3 − 1 1 − λ ] ) = 0 \Rightarrow det \left(\begin{bmatrix}2-\lambda&1&1\\1&1-\lambda&-1\\3&-1&1-\lambda\end{bmatrix}\right)=0 ⇒ d e t ⎝ ⎛ ⎣ ⎡ 2 − λ 1 3 1 1 − λ − 1 1 − 1 1 − λ ⎦ ⎤ ⎠ ⎞ = 0
⇒ ( 2 − λ ) d e t ( [ 1 − λ − 1 − 1 1 − λ ] ) \Rightarrow (2-\lambda)det\left(\begin{bmatrix}1-\lambda&-1\\-1&1-\lambda\end{bmatrix}\right) ⇒ ( 2 − λ ) d e t ( [ 1 − λ − 1 − 1 1 − λ ] )
− d e t ( [ 1 − 1 3 1 − λ ] ) -det\left(\begin{bmatrix}1&-1\\3&1-\lambda\end{bmatrix}\right) − d e t ( [ 1 3 − 1 1 − λ ] )
+ d e t ( [ 1 1 − λ 3 − 1 ] ) = 0 +det\left(\begin{bmatrix}1&1-\lambda\\3&-1\end{bmatrix}\right)=0 + d e t ( [ 1 3 1 − λ − 1 ] ) = 0
⇒ ( 2 − λ ) ( λ 2 − 2 λ ) − ( − λ + 4 ) + ( 3 λ − 4 ) = 0 \Rightarrow \left(2-\lambda\right)\left(\lambda^2-2\lambda\right)-\left(-\lambda+4\right)+ \left(3\lambda-4\right)=0 ⇒ ( 2 − λ ) ( λ 2 − 2 λ ) − ( − λ + 4 ) + ( 3 λ − 4 ) = 0
⇒ λ 3 − 4 λ 2 + 8 = 0 \Rightarrow \lambda^3-4\lambda^2+8=0 ⇒ λ 3 − 4 λ 2 + 8 = 0
∴ \therefore ∴ Characteristic polynomial of A :- λ 3 − 4 λ 2 + 8 = 0 \lambda^3-4\lambda^2+8=0 λ 3 − 4 λ 2 + 8 = 0
Now,
A 2 = A × A = [ 2 1 1 1 1 − 1 3 − 1 1 ] × [ 2 1 1 1 1 − 1 3 − 1 1 ] A^2= A\times A =\begin{bmatrix}2&1&1\\1&1&-1\\3&-1&1\end{bmatrix}\times \begin{bmatrix}2&1&1\\1&1&-1\\3&-1&1\end{bmatrix} A 2 = A × A = ⎣ ⎡ 2 1 3 1 1 − 1 1 − 1 1 ⎦ ⎤ × ⎣ ⎡ 2 1 3 1 1 − 1 1 − 1 1 ⎦ ⎤
= [ 8 2 2 0 3 − 1 8 1 5 ] =\begin{bmatrix}8&2&2\\0&3&-1\\8&1&5\end{bmatrix} = ⎣ ⎡ 8 0 8 2 3 1 2 − 1 5 ⎦ ⎤
and,
A 3 = A 2 × A = [ 8 2 2 0 3 − 1 8 1 5 ] × [ 2 1 1 1 1 − 1 3 − 1 1 ] A^3=A^2\times A=\begin{bmatrix}8&2&2\\0&3&-1\\8&1&5\end{bmatrix}\times \begin{bmatrix}2&1&1\\1&1&-1\\3&-1&1\end{bmatrix} A 3 = A 2 × A = ⎣ ⎡ 8 0 8 2 3 1 2 − 1 5 ⎦ ⎤ × ⎣ ⎡ 2 1 3 1 1 − 1 1 − 1 1 ⎦ ⎤
= [ 24 8 8 0 4 − 4 32 4 12 ] =\begin{bmatrix}24&8&8\\0&4&-4\\32&4&12\end{bmatrix} = ⎣ ⎡ 24 0 32 8 4 4 8 − 4 12 ⎦ ⎤
Now, by Cayley-Hamilton theorem, putting λ = A \lambda=A λ = A ,
A 3 − 4 A 2 + 8 I = 0 3 × 3 A^3-4A^2+8I=0_{3\times3} A 3 − 4 A 2 + 8 I = 0 3 × 3
⇒ [ 24 8 8 0 4 − 4 32 4 12 ] − 4 [ 8 2 2 0 3 − 1 8 1 5 ] \Rightarrow \begin{bmatrix}24&8&8\\0&4&-4\\32&4&12\end{bmatrix}-4\begin{bmatrix}8&2&2\\0&3&-1\\8&1&5\end{bmatrix} ⇒ ⎣ ⎡ 24 0 32 8 4 4 8 − 4 12 ⎦ ⎤ − 4 ⎣ ⎡ 8 0 8 2 3 1 2 − 1 5 ⎦ ⎤
+ 8 [ 1 0 0 0 1 0 0 0 1 ] = 0 3 × 3 +8\begin{bmatrix}1&0&0\\0&1&0\\0&0&1\end{bmatrix}=0_{3\times3} + 8 ⎣ ⎡ 1 0 0 0 1 0 0 0 1 ⎦ ⎤ = 0 3 × 3
⇒ [ 0 0 0 0 0 0 0 0 0 ] = 0 3 × 3 \Rightarrow\begin{bmatrix}0&0&0\\0&0&0\\0&0&0\end{bmatrix}=0_{3\times3} ⇒ ⎣ ⎡ 0 0 0 0 0 0 0 0 0 ⎦ ⎤ = 0 3 × 3
∴ \therefore ∴ Cayley-Hamilton Theorem Verified.
Now, by Cayley-Hamilton theorem,
A 3 − 4 A 2 + 8 I = 0 3 × 3 A^3-4A^2+8I=0_{3\times3} A 3 − 4 A 2 + 8 I = 0 3 × 3
⇒ A ( A 3 − 4 A 2 + 8 I ) = A × 0 3 × 3 \Rightarrow A(A^3-4A^2+8I)=A\times0_{3\times3} ⇒ A ( A 3 − 4 A 2 + 8 I ) = A × 0 3 × 3
[ Multiplying both side by matrix A A A ]
⇒ A 4 − 4 A 3 + 8 A = 0 3 × 3 \Rightarrow A^4-4A^3+8A=0_{3\times3} ⇒ A 4 − 4 A 3 + 8 A = 0 3 × 3
⇒ A 4 = 4 A 3 − 8 A \Rightarrow A^4 = 4A^3-8A ⇒ A 4 = 4 A 3 − 8 A
= 4 [ 24 8 8 0 4 − 4 32 4 12 ] − 8 [ 2 1 1 1 1 − 1 3 − 1 1 ] =4\begin{bmatrix}24&8&8\\0&4&-4\\32&4&12\end{bmatrix}-8\begin{bmatrix}2&1&1\\1&1&-1\\3&-1&1\end{bmatrix} = 4 ⎣ ⎡ 24 0 32 8 4 4 8 − 4 12 ⎦ ⎤ − 8 ⎣ ⎡ 2 1 3 1 1 − 1 1 − 1 1 ⎦ ⎤ = [ 80 24 24 − 8 8 − 8 104 24 40 ] =\begin{bmatrix}80&24&24\\-8&8&-8\\104&24&40\end{bmatrix} = ⎣ ⎡ 80 − 8 104 24 8 24 24 − 8 40 ⎦ ⎤
∴ A 4 = [ 80 24 24 − 8 8 − 8 104 24 40 ] \therefore A^4=\begin{bmatrix}80&24&24\\-8&8&-8\\104&24&40\end{bmatrix} ∴ A 4 = ⎣ ⎡ 80 − 8 104 24 8 24 24 − 8 40 ⎦ ⎤
Comments