Answer to Question #153615 in Linear Algebra for Sourav Mondal

Question #153615

 Let (V, <, >) be an inner product space and

let T belongs to A(V). Prove that the following 

conditions are equivalent. 

(i) T*T =I

(ii) <Tx, Ty> = <x,y> for all x, yEV 

(iii) ||Tx||=||x||for all xEV. 


1
Expert's answer
2021-01-05T13:56:26-0500

(iii)(ii)(iii)\rightarrow (ii)

Suppose that T(x)=x||T(x)|| = ||x|| for all xVx ∈ V.

Now for any x,yV:    <x,y>=14k=14ikx+iky2x, y ∈ V :\;\; <x,y>=\frac{1}{4}\sum_{k=1}^{4}i^k||x+i^ky||^2

if F=C,\mathbb{F}=\mathbb{C},

And if F=R\mathbb{F}=\R ,

we have similar result: <x,y>=14k=14(x+y2xy2)<x,y>=\frac{1}{4}\sum_{k=1}^{4}(||x+y||^2-||x-y||^2)

Using the above relation for the complex version, we have

<T(x),T(y)>=14k=14ikT(x)+ikT(y)2=14k=14ikT(x+iky)2=14k=14ikx+iky2=<x,y><T(x),T(y)>\\=\frac{1}{4}\sum_{k=1}^{4}i^k||T(x)+i^kT(y)||^2\\ =\frac{1}{4}\sum_{k=1}^{4}i^k||T(x+i^ky)||^2\\=\frac{1}{4}\sum_{k=1}^{4}i^k||x+i^ky||^2\\ =<x,y>

(ii)(iii)(ii)\rightarrow (iii)

Suppose that <T(x),T(y)>=<x,y>x,yV<T(x),T(y)>=<x,y>\forall x,y\in V.

Substituting y=x,y = x, we have the desired result. 


(ii)(i)(ii)\rightarrow (i)

Suppose TT is unitary.

Then TT has an inverse T1T^{-1}.

So, for x,yVx, y ∈ V ,

<T(x),y>=<T(x),TT1(y)>=<x,T1(y)><T(x), y> = <T(x), TT^ {−1} (y)> = <x, T^{−1} (y)> .

So, TT^* exists and T=T1T^*=T^{-1}

TT=I\Rightarrow TT^*=I


(i)(ii)(i)\rightarrow (ii)

Assume the adjoint TT^* exists

and TT=TT=ITT^*=T^*T=I

Now for x,yVx, y ∈ V, we have <T(x),T(y))=<x,TT(y)>=<x,y><T(x), T(y)) = <x, T^ ∗T(y)> = <x, y>


Therefore from above discussion, we can conclude that,

(iii)    (ii)    and    (i)    (ii)(iii)\iff(ii)\;\; and \;\;(i)\iff (ii)

So that implies (i)    (ii)    (iii)(i)\iff(ii)\iff(iii)

\therefore (i),(ii),(iii)\pmb{(i),(ii),(iii)} are equivalent.

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment