1) We should multiply both matrix to each other in order to make C matrix:
"AB=A\\cdot B=\\begin{bmatrix}\n 1 & -3 &2\\\\\n 4 & 1&-1\\\\-3&2&5\n\\end{bmatrix} \\;\\cdot\\begin{bmatrix}\n 2 & 1 &5\\\\\n -1 & -2&-2\\\\3&1&2\n\\end{bmatrix} =\\begin{bmatrix}\n 11 & 9 &15\\\\\n 4 & 1&16\\\\7&-2&-9\n\\end{bmatrix}"
The components of the matrix AB is calculated as:
c11 = a11 · b11 + a12 · b21 + a13 · b31 = 1 · 2 + (-3) · (-1) + 2 · 3 = 2 + 3 + 6 = 11
c12 = a11 · b12 + a12 · b22 + a13 · b32 = 1 · 1 + (-3) · (-2) + 2 · 1 = 1 + 6 + 2 = 9
c13 = a11 · b13 + a12 · b23 + a13 · b33 = 1 · 5 + (-3) · (-2) + 2 · 2 = 5 + 6 + 4 = 15
c21 = a21 · b11 + a22 · b21 + a23 · b31 = 4 · 2 + 1 · (-1) + (-1) · 3 = 8 - 1 - 3 = 4
c22 = a21 · b12 + a22 · b22 + a23 · b32 = 4 · 1 + 1 · (-2) + (-1) · 1 = 4 - 2 - 1 = 1
c23 = a21 · b13 + a22 · b23 + a23 · b33 = 4 · 5 + 1 · (-2) + (-1) · 2 = 20 - 2 - 2 = 16
c31 = a31 · b11 + a32 · b21 + a33 · b31 = (-3) · 2 + 2 · (-1) + 5 · 3 = (-6) - 2 + 15 = 7
c32 = a31 · b12 + a32 · b22 + a33 · b32 = (-3) · 1 + 2 · (-2) + 5 · 1 = (-3) - 4 + 5 = -2
c33 = a31 · b13 + a32 · b23 + a33 · b33 = (-3) · 5 + 2 · (-2) + 5 · 2 = (-15) - 4 + 10 = -9
2) In order to find the inverse of AB, we should use the cofactor method:
I) Find determinant of AB matrix:
Use the triangle's rule to calculate the determinant of the matrix with size 3×3:
det AB = 1360
The determinant of АB is not zero, therefore the inverse matrix (AB)-1 exists. To calculate the inverse matrix find additional minors and cofactors of matrix АB:
"C_{11} = (-1)^{1+1}M_{11} = 23"
"M_{12}=\\begin{vmatrix}\n 4 & 16 \\\\\n 7 & -9\n\\end{vmatrix}=-148"
"M_{21}=\\begin{vmatrix}\n 9 & 15 \\\\\n -2 & -9\n\\end{vmatrix}=-51"
3) Write the matrix of cofactors:
"AB=\\begin{bmatrix}\n 23 & -148 &-15\\\\\n 51 & 204&85\\\\129&-116&-25\n\\end{bmatrix}"
4) Transposed matrix of cofactors:
"AB^T=\\begin{bmatrix}\n 23 & 51 &129\\\\\n 148 & -204&-116\\\\-15&85&-25\n\\end{bmatrix}"
5) Find the inverse matrix:
"AB^{-1}=\\frac{AB^T}{det\\;(AB)}=\\begin{bmatrix}\n \\frac{23}{1360} & \\frac{3}{80} &\\frac{129}{1360}\\\\\n \\frac{37}{340} & -\\frac{3}{20}&-\\frac{29}{340}\\\\-\\frac{3}{272}&\\frac{1}{16}&-\\frac{5}{272}\n\\end{bmatrix}"
Comments
Leave a comment