Solution:let u=(a,b,c) ∈ R3 be any element.Given vectors:u1=(1,1,2),u2=(1,−1,2),u3=(1,0,1)Let if possible u=k1u1+k2u2+k3u3, where k1,k2,k3∈R3(a,b,c)=k1(1,1,2)+k2(1,−1,2)+k3(1,0,1)(a,b,c)=(k1,k1,2k1)+(k2,−k2,2k2)+(k3,0,k3)(a,b,c)=(k1+k2+k3,k1−k2,2k1+2k2+k3)Comapring k1+k2+k3=a k1−k2=b and 2k1+2k2+k3=c
Hence, number of variables=number of equationsMatrix A in corresponding matrix equation AX= B for system is "Square Matrix".
Where A=⎣⎡1121−12101⎦⎤
∴∣A∣=1(−1)−1(1)+1(2−(−2))=−1−1+4=−2+4=2=0
∴A is non singular. i.e. A is invertible.∴linear system AX=B hasasolution.∴ Every Element of R3 can be expressed asa linear combination of u1,u2,u3.
Hence u1,u2,u3 span R3.
Comments