Question #150820
Determine whether or not the following vectors span R^3

u1 = ( 1, 1, 2), u2 = ( 1, -1, 2 ) and u3 = ( 1, 0, 1 ).
1
Expert's answer
2020-12-21T18:25:07-0500

Solution:let u=(a,b,c)  R3 be any element.Given vectors:u1=(1,1,2),u2=(1,1,2),u3=(1,0,1)Let if possible u=k1u1+k2u2+k3u3, where k1,k2,k3R3(a,b,c)=k1(1,1,2)+k2(1,1,2)+k3(1,0,1)(a,b,c)=(k1,k1,2k1)+(k2,k2,2k2)+(k3,0,k3)(a,b,c)=(k1+k2+k3,k1k2,2k1+2k2+k3)Comapring           k1+k2+k3=a          k1k2=b and 2k1+2k2+k3=c\mathbf{Solution:} let ~u=(a,b,c)~\in ~R^3 ~be~ any~ element. \\ Given~vectors: u_{1}=(1,1,2),u_{2}=(1,-1,2),u_{3}=(1,0,1) \\Let ~if~ possible~u=k_{1}u_{1}+ k_{2}u_{2}+k_{3}u_{3},~where~k_{1},k_{2},k_{3}\in R^3 \\(a,b,c)=k_{1}(1,1,2)+ k_{2}(1,-1,2)+k_{3}(1,0,1) \\(a,b,c)=(k_{1},k_{1},2k_{1})+ (k_{2},-k_{2},2k_{2})+(k_{3},0,k_{3}) \\(a,b,c)=(k_{1}+k_{2}+k_{3},k_{1}-k_{2},2k_{1}+2k_{2}+k_{3}) \\ Comapring~ \\~~~~~~~~~~k_{1}+k_{2}+k_{3}=a \\~~~~~~~~~~k_{1}-k_{2}=b \\~and~2k_{1}+2k_{2}+k_{3}=c

Hence,      number of variables=number of equationsMatrix A in corresponding matrix equation AX= B for system is "Square Matrix".Hence,~~~~~~number ~of~ variables=number~of~equations \\ Matrix ~A~in~corresponding~matrix~equation~ \\AX=~B~for ~system~is~"Square~Matrix" .

Where      A=[111110221]Where ~~~~~~A=\begin{bmatrix}1 & 1 & 1\\1 & -1 &0 \\2 & 2 & 1\end{bmatrix}


A=1(1)1(1)+1(2(2))=11+4=2+4=20\therefore |A|=1(-1)-1(1)+1(2-(-2))=-1-1+4=-2+4=2\neq0

A is non singular. i.e. A is invertible.linear system AX=B hasasolution. Every Element of R3 can be expressed asa linear combination of u1,u2,u3.\therefore A~is~non~singular. ~i.e.~A~is~invertible. \\ \therefore linear~system~AX=B~has \,a \, solution. \\ \therefore~Every~Element~of~R^3 ~can ~be~ expressed~as \,a~linear~combination~of~u_{1},u_{2},u_{3}.

Hence u1,u2,u3 span R3.Hence ~u_{1},u_{2},u_{3}~span~R^3.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS