S o l u t i o n : l e t u = ( a , b , c ) ∈ R 3 b e a n y e l e m e n t . G i v e n v e c t o r s : u 1 = ( 1 , 1 , 2 ) , u 2 = ( 1 , − 1 , 2 ) , u 3 = ( 1 , 0 , 1 ) L e t i f p o s s i b l e u = k 1 u 1 + k 2 u 2 + k 3 u 3 , w h e r e k 1 , k 2 , k 3 ∈ R 3 ( a , b , c ) = k 1 ( 1 , 1 , 2 ) + k 2 ( 1 , − 1 , 2 ) + k 3 ( 1 , 0 , 1 ) ( a , b , c ) = ( k 1 , k 1 , 2 k 1 ) + ( k 2 , − k 2 , 2 k 2 ) + ( k 3 , 0 , k 3 ) ( a , b , c ) = ( k 1 + k 2 + k 3 , k 1 − k 2 , 2 k 1 + 2 k 2 + k 3 ) C o m a p r i n g k 1 + k 2 + k 3 = a k 1 − k 2 = b a n d 2 k 1 + 2 k 2 + k 3 = c \mathbf{Solution:} let ~u=(a,b,c)~\in ~R^3 ~be~ any~ element.
\\ Given~vectors: u_{1}=(1,1,2),u_{2}=(1,-1,2),u_{3}=(1,0,1)
\\Let ~if~ possible~u=k_{1}u_{1}+ k_{2}u_{2}+k_{3}u_{3},~where~k_{1},k_{2},k_{3}\in R^3
\\(a,b,c)=k_{1}(1,1,2)+ k_{2}(1,-1,2)+k_{3}(1,0,1)
\\(a,b,c)=(k_{1},k_{1},2k_{1})+ (k_{2},-k_{2},2k_{2})+(k_{3},0,k_{3})
\\(a,b,c)=(k_{1}+k_{2}+k_{3},k_{1}-k_{2},2k_{1}+2k_{2}+k_{3})
\\ Comapring~
\\~~~~~~~~~~k_{1}+k_{2}+k_{3}=a
\\~~~~~~~~~~k_{1}-k_{2}=b
\\~and~2k_{1}+2k_{2}+k_{3}=c Solution : l e t u = ( a , b , c ) ∈ R 3 b e an y e l e m e n t . G i v e n v ec t ors : u 1 = ( 1 , 1 , 2 ) , u 2 = ( 1 , − 1 , 2 ) , u 3 = ( 1 , 0 , 1 ) L e t i f p oss ib l e u = k 1 u 1 + k 2 u 2 + k 3 u 3 , w h ere k 1 , k 2 , k 3 ∈ R 3 ( a , b , c ) = k 1 ( 1 , 1 , 2 ) + k 2 ( 1 , − 1 , 2 ) + k 3 ( 1 , 0 , 1 ) ( a , b , c ) = ( k 1 , k 1 , 2 k 1 ) + ( k 2 , − k 2 , 2 k 2 ) + ( k 3 , 0 , k 3 ) ( a , b , c ) = ( k 1 + k 2 + k 3 , k 1 − k 2 , 2 k 1 + 2 k 2 + k 3 ) C o ma p r in g k 1 + k 2 + k 3 = a k 1 − k 2 = b an d 2 k 1 + 2 k 2 + k 3 = c
H e n c e , n u m b e r o f v a r i a b l e s = n u m b e r o f e q u a t i o n s M a t r i x A i n c o r r e s p o n d i n g m a t r i x e q u a t i o n A X = B f o r s y s t e m i s " S q u a r e M a t r i x " . Hence,~~~~~~number ~of~ variables=number~of~equations
\\ Matrix ~A~in~corresponding~matrix~equation~
\\AX=~B~for ~system~is~"Square~Matrix" . He n ce , n u mb er o f v a r iab l es = n u mb er o f e q u a t i o n s M a t r i x A in corres p o n d in g ma t r i x e q u a t i o n A X = B f or sys t e m i s " Sq u a re M a t r i x ".
W h e r e A = [ 1 1 1 1 − 1 0 2 2 1 ] Where ~~~~~~A=\begin{bmatrix}1 & 1 & 1\\1 & -1 &0 \\2 & 2 & 1\end{bmatrix} Wh ere A = ⎣ ⎡ 1 1 2 1 − 1 2 1 0 1 ⎦ ⎤
∴ ∣ A ∣ = 1 ( − 1 ) − 1 ( 1 ) + 1 ( 2 − ( − 2 ) ) = − 1 − 1 + 4 = − 2 + 4 = 2 ≠ 0 \therefore |A|=1(-1)-1(1)+1(2-(-2))=-1-1+4=-2+4=2\neq0 ∴ ∣ A ∣ = 1 ( − 1 ) − 1 ( 1 ) + 1 ( 2 − ( − 2 )) = − 1 − 1 + 4 = − 2 + 4 = 2 = 0
∴ A i s n o n s i n g u l a r . i . e . A i s i n v e r t i b l e . ∴ l i n e a r s y s t e m A X = B h a s a s o l u t i o n . ∴ E v e r y E l e m e n t o f R 3 c a n b e e x p r e s s e d a s a l i n e a r c o m b i n a t i o n o f u 1 , u 2 , u 3 . \therefore A~is~non~singular. ~i.e.~A~is~invertible.
\\ \therefore linear~system~AX=B~has \,a \, solution.
\\ \therefore~Every~Element~of~R^3 ~can ~be~ expressed~as \,a~linear~combination~of~u_{1},u_{2},u_{3}. ∴ A i s n o n s in gu l a r . i . e . A i s in v er t ib l e . ∴ l in e a r sys t e m A X = B ha s a so l u t i o n . ∴ E v ery El e m e n t o f R 3 c an b e e x p resse d a s a l in e a r co mbina t i o n o f u 1 , u 2 , u 3 .
H e n c e u 1 , u 2 , u 3 s p a n R 3 . Hence ~u_{1},u_{2},u_{3}~span~R^3. He n ce u 1 , u 2 , u 3 s p an R 3 .
Comments