There is a general solution to the 4th power equation, but it is very complex. Fortunately this equation can be solved quite easily.
x 4 − 2 x 3 + 4 x 2 + 6 x − 21 = ( x 2 + a ) ( x 2 + b x + c ) = 0 x^4-2x^3+4x^2+6x-21=(x^2+a)(x^2+bx+c)=0 x 4 − 2 x 3 + 4 x 2 + 6 x − 21 = ( x 2 + a ) ( x 2 + b x + c ) = 0
x 4 + b x 3 + ( a + c ) x 2 + a b x + a c = 0 x^4+bx^3+(a+c)x^2+abx+ac=0 x 4 + b x 3 + ( a + c ) x 2 + ab x + a c = 0
b = − 2 , a + c = 4 , a b = 6 , a c = − 21 b=-2, a+c=4,ab=6,ac=-21 b = − 2 , a + c = 4 , ab = 6 , a c = − 21
b = − 2 , a b = 6 , a = − 3 , c = 4 − a = 4 + 3 = 7 b=-2, ab=6,a=-3,c=4-a=4+3=7 b = − 2 , ab = 6 , a = − 3 , c = 4 − a = 4 + 3 = 7
Therefore the equation is:
( x 2 − 3 ) ( x 2 − 2 x + 7 ) = 0 (x^2-3)(x^2-2x+7)=0 ( x 2 − 3 ) ( x 2 − 2 x + 7 ) = 0
So either
x = ± 3 x=\pm\sqrt{3} x = ± 3 or
x 2 − 2 x + 7 = 0 x^2-2x+7=0 x 2 − 2 x + 7 = 0
D = b 2 − 4 a c = 4 − 28 = − 24 , D = 2 6 i D=b^2-4ac=4-28=-24,\sqrt{D}=2\sqrt{6}i D = b 2 − 4 a c = 4 − 28 = − 24 , D = 2 6 i
x = 2 ± 2 6 i 2 = 1 ± 6 i x=\frac{2\pm2\sqrt{6}i}{2}=1\pm\sqrt{6}i x = 2 2 ± 2 6 i = 1 ± 6 i
Out of 4 roots that we found ( ± 3 , 1 ± 6 i ) (\pm\sqrt{3},1\pm\sqrt{6}i) ( ± 3 , 1 ± 6 i ) only the first two are equal in magnitude and opposite in sign, so n=1 (one pair).
Comments