Question #149143
Which of the following statements are True and
which are False ? Justify your answer with a
short proof or by a counter-example.

(a) The operation *, defined by x * y = log (xy) is
a binary operation on S, where
S={xER x>0}.

(b) If a and b are eigenvalues of two n x n
matrices A and B respectively, then a + b is
an eigenvalue of A + B.

(c) If S and T are linear transformations such
that SoT is defined and is 1 — 1, then S is
1 — 1.

(d) T : R³- R³: T((x1, x2, x3), (y 1 , y2, y3)) =
(x1 + x2 + x3) . (y1 + y2 + y3)
is an inner product on R³.

(e) {India, — 5, Jamila} is a set.
1
Expert's answer
2020-12-08T07:38:54-0500

(a) The operation *, defined by xy=log(xy)x * y = \log (xy) is not a binary operation on

S={xR  x>0},S=\{x\in \mathbb R \ |\ x>0\}, bacause 11=log(11)=log1=0S.1*1=\log(1\cdot 1)=\log 1=0\notin S.


Answer: false


(b) Let us consider two 2×22\times 2 matrices A=[1111]A=\left[\begin{array}{cc} 1 & 1 \\ 1 & 1 \end{array}\right] and B=[1031]B=\left[\begin{array}{cc} -1 & 0 \\ 3 & -1 \end{array}\right]. Let us find their eigenvalues:

det(AaE)=1a111a=(1a)21=0\det(A-aE)=\left|\begin{array}{cc} 1-a & 1 \\ 1 & 1-a \end{array}\right|=(1-a)^2-1=0 implies 1a=±11-a=\pm 1, and therefore, a=0a=0 or a=2;a=2;

det(BbE)=[1b031b]=(1b)2=0\det(B-bE)=\left[\begin{array}{cc} -1-b & 0 \\ 3 & -1-b \end{array}\right]=(-1-b)^2=0 implies b=1;b=-1;


det(A+BcE)=c14c=c24=0\det(A+B-cE)=\left|\begin{array}{cc} -c & 1 \\ 4 & -c \end{array}\right|=c^2-4=0 implies c=2c=2 or c=2c=-2.


It follows that a=0a=0 and b=1b=-1 are the eigenvalues of the matrices AA and BB respectively, but a+b=1a+b=-1 is not the eigenvalue of the matrix A+B.A+B.


Answer: false


(c) Let define the linear transformations T:R2R4,  T(x1,x2)=(x1,x2,0,0)T:\mathbb R^2\to\mathbb R^4,\ \ T(x_1,x_2)=(x_1, x_2, 0, 0) and S:R4R2,  S(x1,x2,x3,x4)=(x1,x2)S:\mathbb R^4\to\mathbb R^2,\ \ S(x_1,x_2,x_3,x_4)=(x_1, x_2). Then ST:R2R2.S\circ T:\mathbb R^2\to\mathbb R^2. Since ST(x1,x2)=S(x1,x2,0,0)=(x1,x2)S\circ T(x_1,x_2)=S(x_1, x_2, 0, 0)=(x_1,x_2), STS\circ T is an identity map of R2\mathbb R^2, and thus is 1 — 1. On the other hand, S(1,1,0,0)=(1,1)=S(1,1,1,1)S(1,1,0,0)=(1, 1)=S(1,1,1,1), and consequently, SS is not 1 — 1.


Answer: false


(d) Let T:R3R3,  T((x1,x2,x3),(y1,y2,y3))=(x1+x2+x3)(y1+y2+y3)T :\mathbb R^3\to\mathbb R^3,\ \ T((x_1, x_2, x_3), (y_1 , y_2, y_3)) =(x_1 + x_2 + x_3)\cdot(y_1 + y_2 + y_3)


Let u=(x1,x2,x3), v=(y1,y2,y3),u=(x_1,x_2,x_3), \ v=(y_1,y_2,y_3), and w=(z1,z2,z3)w=(z_1,z_2,z_3) be vectors and α\alpha  be a scalar, then:

1. T(u+v,w)=((x1+y1)+(x2+y2)+(x3+y3))(z1+z2+z3)=(x1+x2+x3+y1+y2+y3)(z1+z2+z3)=(x1+x2+x3)(z1+z2+z3)+(y1+y2+y3)(z1+z2+z3)=T(u,w)+T(v,w)T(u+v, w) =((x_1+y_1) + (x_2+y_2) + (x_3+y_3))\cdot(z_1 + z_2 + z_3)=(x_1+ x_2+ x_3+y_1+y_2 +y_3)\cdot(z_1 + z_2 + z_3)=(x_1+ x_2+ x_3)\cdot(z_1 + z_2 + z_3)+(y_1+y_2 +y_3)\cdot(z_1 + z_2 + z_3)=T(u, w)+T(v, w)


2. T(αu,v)=T(α(x1,x2,x3),(y1,y2,y3))=(αx1+αx2+αx3)(y1+y2+y3)=α(x1+x2+x3)(y1+y2+y3)=αT(u,v)T(\alpha u, v)=T(\alpha(x_1, x_2, x_3), (y_1 , y_2, y_3)) =(\alpha x_1 + \alpha x_2 + \alpha x_3)\cdot(y_1 + y_2 + y_3)=\alpha (x_1 + x_2 + x_3)\cdot(y_1 + y_2 + y_3)=\alpha T( u, v)


3. T(u,v)=(x1+x2+x3)(y1+y2+y3)=(y1+y2+y3)(x1+x2+x3)=T(v,u)T( u, v) =(x_1 + x_2 + x_3)\cdot(y_1 + y_2 + y_3)=(y_1 + y_2 + y_3)\cdot (x_1 + x_2 + x_3)=T( v, u)


4.  T(u,u)=(x1+x2+x3)(x1+x2+x3)=(x1+x2+x3)20T( u, u) =(x_1 + x_2 + x_3)\cdot(x_1 + x_2 + x_3)=(x_1 + x_2 + x_3)^2\ge0. On the other hand, for (1,1,0)(0,0,0)(-1,1,0)\ne(0,0,0) we have T((1,1,0),(1,1,0))=(1+1+0)(1+1+0)=0T((-1,1,0),(-1,1,0))=(-1+1+0)(-1+1+0)=0.


Therefore, T((x1,x2,x3),(y1,y2,y3))=(x1+x2+x3)(y1+y2+y3)T((x_1, x_2, x_3), (y_1 , y_2, y_3)) =(x_1 + x_2 + x_3)\cdot(y_1 + y_2 + y_3) is not an inner product on R3\mathbb R^3.


Answer: false


(e) {India, — 5, Jamila} is a set with three elements: India, — 5 and Jamila.


Answer: true


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS