(a) The operation "*", defined by "x * y = \\log (xy)" is not a binary operation on
"S=\\{x\\in \\mathbb R \\ |\\ x>0\\}," bacause "1*1=\\log(1\\cdot 1)=\\log 1=0\\notin S."
Answer: false
(b) Let us consider two "2\\times 2" matrices "A=\\left[\\begin{array}{cc} 1 & 1 \\\\ 1 & 1 \\end{array}\\right]" and "B=\\left[\\begin{array}{cc} -1 & 0 \\\\ 3 & -1 \\end{array}\\right]". Let us find their eigenvalues:
"\\det(A-aE)=\\left|\\begin{array}{cc} 1-a & 1 \\\\ 1 & 1-a \\end{array}\\right|=(1-a)^2-1=0" implies "1-a=\\pm 1", and therefore, "a=0" or "a=2;"
"\\det(B-bE)=\\left[\\begin{array}{cc} -1-b & 0 \\\\ 3 & -1-b \\end{array}\\right]=(-1-b)^2=0" implies "b=-1;"
"\\det(A+B-cE)=\\left|\\begin{array}{cc} -c & 1 \\\\ 4 & -c \\end{array}\\right|=c^2-4=0" implies "c=2" or "c=-2".
It follows that "a=0" and "b=-1" are the eigenvalues of the matrices "A" and "B" respectively, but "a+b=-1" is not the eigenvalue of the matrix "A+B."
Answer: false
(c) Let define the linear transformations "T:\\mathbb R^2\\to\\mathbb R^4,\\ \\ T(x_1,x_2)=(x_1, x_2, 0, 0)" and "S:\\mathbb R^4\\to\\mathbb R^2,\\ \\ S(x_1,x_2,x_3,x_4)=(x_1, x_2)". Then "S\\circ T:\\mathbb R^2\\to\\mathbb R^2." Since "S\\circ T(x_1,x_2)=S(x_1, x_2, 0, 0)=(x_1,x_2)", "S\\circ T" is an identity map of "\\mathbb R^2", and thus is 1 — 1. On the other hand, "S(1,1,0,0)=(1, 1)=S(1,1,1,1)", and consequently, "S" is not 1 — 1.
Answer: false
(d) Let "T :\\mathbb R^3\\to\\mathbb R^3,\\ \\ T((x_1, x_2, x_3), (y_1 , y_2, y_3)) =(x_1 + x_2 + x_3)\\cdot(y_1 + y_2 + y_3)"
Let "u=(x_1,x_2,x_3), \\ v=(y_1,y_2,y_3)," and "w=(z_1,z_2,z_3)" be vectors and "\\alpha" be a scalar, then:
1. "T(u+v, w) =((x_1+y_1) + (x_2+y_2) + (x_3+y_3))\\cdot(z_1 + z_2 + z_3)=(x_1+ x_2+ x_3+y_1+y_2 +y_3)\\cdot(z_1 + z_2 + z_3)=(x_1+ x_2+ x_3)\\cdot(z_1 + z_2 + z_3)+(y_1+y_2 +y_3)\\cdot(z_1 + z_2 + z_3)=T(u, w)+T(v, w)"
2. "T(\\alpha u, v)=T(\\alpha(x_1, x_2, x_3), (y_1 , y_2, y_3)) =(\\alpha x_1 + \\alpha x_2 + \\alpha x_3)\\cdot(y_1 + y_2 + y_3)=\\alpha (x_1 + x_2 + x_3)\\cdot(y_1 + y_2 + y_3)=\\alpha T( u, v)"
3. "T( u, v) =(x_1 + x_2 + x_3)\\cdot(y_1 + y_2 + y_3)=(y_1 + y_2 + y_3)\\cdot (x_1 + x_2 + x_3)=T( v, u)"
4. "T( u, u) =(x_1 + x_2 + x_3)\\cdot(x_1 + x_2 + x_3)=(x_1 + x_2 + x_3)^2\\ge0". On the other hand, for "(-1,1,0)\\ne(0,0,0)" we have "T((-1,1,0),(-1,1,0))=(-1+1+0)(-1+1+0)=0".
Therefore, "T((x_1, x_2, x_3), (y_1 , y_2, y_3)) =(x_1 + x_2 + x_3)\\cdot(y_1 + y_2 + y_3)" is not an inner product on "\\mathbb R^3".
Answer: false
(e) {India, — 5, Jamila} is a set with three elements: India, — 5 and Jamila.
Answer: true
Comments
Leave a comment