We have matrix: A=
( 2 1 2 1 3 1 2 2 − 6 ) \begin{pmatrix}
2 & 1 & 2 \\
1 & 3 & 1 \\
2 & 2 & -6
\end{pmatrix} ⎝ ⎛ 2 1 2 1 3 2 2 1 − 6 ⎠ ⎞
Find the eigenvalues of the matrix:
Associate matrix Vlasna vectors values and introduce a variable.
( 2 − λ 1 2 1 3 − λ 1 2 2 − 6 − λ ) \begin{pmatrix}
2- \lambda & 1 & 2 \\
1 & 3-\lambda & 1 \\
2 & 2 & -6 - \lambda
\end{pmatrix} ⎝ ⎛ 2 − λ 1 2 1 3 − λ 2 2 1 − 6 − λ ⎠ ⎞
To do this, find the determinant of the matrix and equate this expression to zero.
( 2 − λ ) ∗ ( ( 3 − λ ) ∗ ( − 6 − λ ) − 2 ∗ 1 ) − 1 ∗ ( 1 ∗ ( − 6 = λ ) − 2 ∗ 2 ) + 2 ∗ ( 1 ∗ 1 − ( 3 − λ ) ∗ 2 ) = 0 (2-\lambda)*((3 - \lambda)*(-6-\lambda)-2*1)-1*(1*(-6=\lambda)-2*2)+2*(1*1-(3-\lambda)*2)=0 ( 2 − λ ) ∗ (( 3 − λ ) ∗ ( − 6 − λ ) − 2 ∗ 1 ) − 1 ∗ ( 1 ∗ ( − 6 = λ ) − 2 ∗ 2 ) + 2 ∗ ( 1 ∗ 1 − ( 3 − λ ) ∗ 2 ) = 0
After transformations, we get:
λ \lambda λ 3 + λ +\lambda + λ 2 − 31 λ + 40 = 0 -31\lambda +40 = 0 − 31 λ + 40 = 0
After applying the rules, it is clear that the roots of the equation are not integers. Let's calculate the approximate λ \lambda λ .
λ \lambda λ 1 = − 6 , 60 =-6,60 = − 6 , 60
λ \lambda λ 2 = 4 , 15 =4,15 = 4 , 15
λ \lambda λ 3 = 1 , 45 =1,45 = 1 , 45
Multiply the matrix A by the matrix of its eigenvalues:
( 2 1 2 1 3 1 2 2 − 6 ) \begin{pmatrix}
2 & 1 & 2 \\
1 & 3 & 1 \\
2 & 2 & -6
\end{pmatrix} ⎝ ⎛ 2 1 2 1 3 2 2 1 − 6 ⎠ ⎞ ∗ * ∗ ( − 6 , 6 4 , 15 1 , 45 ) \begin{pmatrix}
-6,6 \\
4,15 \\
1,45
\end{pmatrix} ⎝ ⎛ − 6 , 6 4 , 15 1 , 45 ⎠ ⎞ = = = ( − 6 , 15 7 , 3 − 13 , 6 ) \begin{pmatrix}
-6,15 \\
7,3 \\
-13,6
\end{pmatrix} ⎝ ⎛ − 6 , 15 7 , 3 − 13 , 6 ⎠ ⎞
Maybe, if I misunderstood something, I add to the report: the sum and product of the matrix A itself:
The sum of the matrix: A + A = 2A
2 ( 2 1 2 1 3 1 2 2 − 6 ) = ( 4 2 4 2 6 2 4 4 − 12 ) 2\begin{pmatrix}
2 & 1 & 2\\
1 & 3 & 1\\
2 & 2 & -6
\end{pmatrix}=\begin{pmatrix}
4 & 2 & 4 \\
2 & 6 & 2\\
4 & 4 & -12
\end{pmatrix} 2 ⎝ ⎛ 2 1 2 1 3 2 2 1 − 6 ⎠ ⎞ = ⎝ ⎛ 4 2 4 2 6 4 4 2 − 12 ⎠ ⎞
And product of the matrix: A ∗ A = A 2 A * A = A^2 A ∗ A = A 2
A ∗ A = ( 2 1 2 1 3 1 2 2 − 6 ) ∗ ( 2 1 2 1 3 1 2 2 − 6 ) = ( 9 9 − 7 7 12 − 1 − 6 − 4 42 ) A*A=\begin{pmatrix}
2 & 1 & 2 \\
1 & 3 & 1 \\
2 & 2 & -6
\end{pmatrix}*\begin{pmatrix}
2 & 1 & 2 \\
1 & 3 & 1 \\
2 & 2 & -6
\end{pmatrix}=\begin{pmatrix}
9 & 9 & -7 \\
7 & 12 & -1 \\
-6 & -4 & 42
\end{pmatrix} A ∗ A = ⎝ ⎛ 2 1 2 1 3 2 2 1 − 6 ⎠ ⎞ ∗ ⎝ ⎛ 2 1 2 1 3 2 2 1 − 6 ⎠ ⎞ = ⎝ ⎛ 9 7 − 6 9 12 − 4 − 7 − 1 42 ⎠ ⎞
Multiplication is performed for each component of the matrix separately:
a 1 2 1 = a 1 1 ∗ a 1 1 + a 1 2 ∗ a 2 1 + a 1 3 ∗ a 3 1 = 2 ∗ 2 + 1 ∗ 1 + 2 ∗ 2 = 9 a^2_11=a_11*a_11 +a_12*a_21+a_13*a_31= 2*2+1*1+2*2=9 a 1 2 1 = a 1 1 ∗ a 1 1 + a 1 2 ∗ a 2 1 + a 1 3 ∗ a 3 1 = 2 ∗ 2 + 1 ∗ 1 + 2 ∗ 2 = 9
a 1 2 2 = a 1 1 ∗ a 1 2 + a 1 2 ∗ a 2 2 + a 1 3 ∗ a 3 2 = 2 ∗ 1 + 1 ∗ 3 + 2 ∗ 2 = 2 + 3 + 4 = 9 a^2_12=a_11*a_12 +a_12*a_22+a_13*a_32=2*1+1*3+2*2=2+3+4=9 a 1 2 2 = a 1 1 ∗ a 1 2 + a 1 2 ∗ a 2 2 + a 1 3 ∗ a 3 2 = 2 ∗ 1 + 1 ∗ 3 + 2 ∗ 2 = 2 + 3 + 4 = 9
a 1 2 3 = a 1 1 ∗ a 1 3 + a 1 2 ∗ a 2 3 + a 1 3 ∗ a 3 3 = 2 ∗ 2 + 1 ∗ 1 + 2 ∗ ( − 6 ) = − 7 a^2_13=a_11*a_13 +a_12*a_23+a_13*a_33= 2*2+1*1+2*(-6)=-7 a 1 2 3 = a 1 1 ∗ a 1 3 + a 1 2 ∗ a 2 3 + a 1 3 ∗ a 3 3 = 2 ∗ 2 + 1 ∗ 1 + 2 ∗ ( − 6 ) = − 7
a 2 2 1 = a 2 1 ∗ a 1 1 + a 2 2 ∗ a 2 1 + a 2 3 ∗ a 3 1 = 1 ∗ 2 + 3 ∗ 1 + 1 ∗ 2 = 7 a^2_21=a_21*a_11 +a_22*a_21+a_23*a_31=1*2+3*1+1*2=7 a 2 2 1 = a 2 1 ∗ a 1 1 + a 2 2 ∗ a 2 1 + a 2 3 ∗ a 3 1 = 1 ∗ 2 + 3 ∗ 1 + 1 ∗ 2 = 7
a 2 2 2 = a 2 1 ∗ a 1 2 + a 2 2 ∗ a 2 2 + a 2 3 ∗ a 3 2 = 1 ∗ 1 + 3 ∗ 3 + 1 ∗ 2 = 12 a^2_22=a_21*a_12 +a_22*a_22+a_23*a_32=1*1+3*3+1*2=12 a 2 2 2 = a 2 1 ∗ a 1 2 + a 2 2 ∗ a 2 2 + a 2 3 ∗ a 3 2 = 1 ∗ 1 + 3 ∗ 3 + 1 ∗ 2 = 12
a 2 2 3 = a 2 1 ∗ a 1 3 + a 2 2 ∗ a 2 3 + a 2 3 ∗ a 3 3 = 1 ∗ 2 + 3 ∗ 1 + 1 ∗ ( − 6 ) = − 1 a^2_23=a_21*a_13 +a_22*a_23+a_23*a_33=1*2+3*1+1*(-6)=-1 a 2 2 3 = a 2 1 ∗ a 1 3 + a 2 2 ∗ a 2 3 + a 2 3 ∗ a 3 3 = 1 ∗ 2 + 3 ∗ 1 + 1 ∗ ( − 6 ) = − 1
a 3 2 1 = a 3 1 ∗ a 1 1 + a 3 2 ∗ a 2 1 + a 3 3 ∗ a 3 1 = 2 ∗ 2 + 2 ∗ 1 + ( − 6 ) ∗ 2 = − 6 a^2_31=a_31*a_11 +a_32*a_21+a_33*a_31= 2 *2 +2*1+(-6)*2=-6 a 3 2 1 = a 3 1 ∗ a 1 1 + a 3 2 ∗ a 2 1 + a 3 3 ∗ a 3 1 = 2 ∗ 2 + 2 ∗ 1 + ( − 6 ) ∗ 2 = − 6
a 3 2 2 = a 3 1 ∗ a 1 2 + a 3 2 ∗ a 2 2 + a 3 3 ∗ a 3 2 = 2 ∗ 1 + 2 ∗ 3 + ( − 6 ) ∗ 2 = − 4 a^2_32=a_31*a_12 +a_32*a_22+a_33*a_32=2*1+2*3+(-6)*2=-4 a 3 2 2 = a 3 1 ∗ a 1 2 + a 3 2 ∗ a 2 2 + a 3 3 ∗ a 3 2 = 2 ∗ 1 + 2 ∗ 3 + ( − 6 ) ∗ 2 = − 4
a 3 2 3 = a 3 1 ∗ a 1 3 + a 3 2 ∗ a 2 3 + a 3 3 ∗ a 3 3 = 2 ∗ 2 + 2 ∗ 1 + ( − 6 ) ∗ ( − 6 ) = 42 a^2_33=a_31*a_13 +a_32*a_23+a_33*a_33=2*2+2*1+(-6)*(-6)=42 a 3 2 3 = a 3 1 ∗ a 1 3 + a 3 2 ∗ a 2 3 + a 3 3 ∗ a 3 3 = 2 ∗ 2 + 2 ∗ 1 + ( − 6 ) ∗ ( − 6 ) = 42
Comments