Answer to Question #146822 in Linear Algebra for Sourav Mondal

Question #146822

There is no co-ordinate transformation that transforms the quadratic form x² + y²+ z² to xz + yz. True or false


1
Expert's answer
2020-11-30T10:35:02-0500

Let's the quadratic form 

x2+y2+z2x^2+y^2+z^2

and

xz+yzxz+yz

let's replace

x=x1z1y=y1z=x1+z1x=x_1-z_1\\ y=y_1\\ z=x_1+z_1

xz+yz=(x1z1)(x1+z1)+y1(x1+z1)==x12z12+x1y1+y1z1==(x12+x1y1+14y12)14y12+y1z1z12==(x1+12y1)2(14y12y1z1+z12)==(x1+12y1)2(12y1z1)2xz+yz=(x_1-z_1)(x_1+z_1)+y_1(x_1+z_1)=\\ =x_1^2-z_1^2+x_1y_1+y_1z_1=\\ =(x_1^2+x_1y_1+\frac{1}{4}y_1^2)-\frac{1}{4}y_1^2+y_1z_1-z_1^2=\\ =(x_1+\frac{1}{2}y_1)^2-(\frac{1}{4}y_1^2-y_1z_1+z_1^2)=\\ =(x_1+\frac{1}{2}y_1)^2-(\frac{1}{2}y_1-z_1)^2

let's replace

x2=x1+12y1y2=12y1z1z2=z1x_2=x_1+\frac{1}{2}y_1\\ y_2=\frac{1}{2}y_1-z_1\\ z_2=z_1

xz+yz=x22y22x2+y2+z2xz+yz=x^2_2-y^2_2\neq x^2+y^2+z^2

True


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment