"Q=x^2_1+2x_2x_3"
Let
"x_1 =y_1\\\\\nx_2=y_2-y_3\\\\\nx_3=y_2+y_3"
"Q=y^2_1+2(y_2-y_3)(y_2+y_3)=\\\\\n=y^2_1+2y^2_2-2y^2_3"
canonical form is "Q=y^2_1+2y^2_2-2y^2_3"
rank=3 (№ of non-zero eigen values)
index= 2 (№ of positive eigen values)
signature=2-1=1 (difference betwen № of positive and negative eigen values)
nature: indefinite if some of the eigen values of Q are + ve and others – ve.
Comments
Leave a comment