Answer to Question #144442 in Linear Algebra for Sourav Mondal

Question #144442

Solve by Gaussian elimination method the following system of equations :

x+y+z+t=5

x-y+z+t=1

x + z + t = 3


1
Expert's answer
2020-11-17T15:34:15-0500

make a matrix:

(111151111110113)\begin{pmatrix} 1& 1&1&1&&5 \\ 1&-1&1&1&&1\\ 1&0&1&1&&3 \end{pmatrix}

make this matrix simple form:

line 3 minus line 2:

(111151111101002)\begin{pmatrix} 1& 1&1&1&&5 \\ 1&-1&1&1&&1\\ 0&1&0&0&&2 \end{pmatrix}

line 2 minus line 1:

(111150200401002)\begin{pmatrix} 1& 1&1&1&&5 \\ 0&-2&0&0&&-4\\ 0&1&0&0&&2 \end{pmatrix}

line 2 divided by -2:

(111150100201002)\begin{pmatrix} 1& 1&1&1&&5 \\ 0&1&0&0&&2\\ 0&1&0&0&&2 \end{pmatrix}

lines 2 and 3 are equal, so we remove the third line:

(1111501002)\begin{pmatrix} 1& 1&1&1&&5 \\ 0&1&0&0&&2\\ \end{pmatrix}

this matrix has a simple form, back to system equations:

x+y+z+t=5,x+y+z+t=5,

y=2;y=2;


x=52zt,x=5-2-z-t,

y=2;y=2;


z and t are free variables

z=h1,z=h1,

t=h2;t=h2;


solution to the system of equations:

x=3h1h2,x=3- h1-h2,

y=2,y=2,

z=h1,z=h1,

t=h2;t=h2;

(where h1 and h2 are any real numbers)


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment