Given
"W=\\{(x_1,x_2,x_3)\\R^3:x_2+x_3=0\\}"Let "a,b\\in \\R\\&(x_1,x_2,x_3),(y_1,y_2,y_3)\\in\\R^3"
Now,
Note that
"ax_2+by_2+ax_3+by_3=a(x_2+x_3)+b(y_2+y_3)=0\\\\\n\\implies (ax_1+by_1,ax_2+by_2,ax_3+by_3)\\in W"Hence, W is a subspace of "\\R^3" .
Let us define a subspace
"W_1=\\{(x_2,x_2,0)\\}\\\\\nW_2=\\{(x_2,2x_2,0)\\}"Clearly,
And,
As, for any "\\vec v\\in \\R^3" we can write "\\vec v=\\vec u+\\vec w" for some "\\vec u\\in W,\\vec w\\in W_1" and hold "(\\star)" .
Similarly for
"\\R^3=W\\oplus W_2"
Comments
Leave a comment