Answer to Question #144997 in Linear Algebra for Sourav Mondal

Question #144997
Prove that C⁴/C ~_ C³
1
Expert's answer
2020-12-04T06:41:11-0500

Let ϕ:C4C3\phi:\mathbb{C}^4\rightarrow \mathbb{C}^3 be defined as ϕ(z1,z2,z3,z4)=(z1,z2,z3).\phi(z_1,z_2,z_3,z_4)=(z_1,z_2,z_3). This projection map is clearly a homomorphism over C\mathbb{C} , since ϕ(z1+z1,z2+z2,z3+z3,z4+z4)=(z1+z1,z2+z2,z3+z3)=(z1,z2,z3)+(z1+z2+z3)=ϕ(z1,z2,z3,z4)+ϕ(z1,z2,z3,z4)\phi(z_1+z_1',z_2+z_2',z_3+z_3',z_4+z_4')=(z_1+z_1',z_2+z_2',z_3+z_3')=(z_1,z_2,z_3)+(z_1'+z_2'+z_3')=\phi(z_1,z_2,z_3,z_4)+\phi(z_1',z_2',z_3',z_4'). Also its clearly, linear since, ϕ(λ(z1,z2,z3,z4))=ϕ(λz1,λz2,λz3,λz4)\phi(\lambda(z_1,z_2,z_3,z_4))=\phi(\lambda z_1,\lambda z_2,\lambda z_3,\lambda z_4) =(λz1,λz2,λz3)=λ(z1,z2,z3)=λϕ(z1,z2,z3,z4).=(\lambda z_1,\lambda z_2,\lambda z_3)=\lambda(z_1,z_2,z_3)=\lambda\phi(z_1,z_2,z_3,z_4).

Surjectivity is immediate since (z1,z2,z3)(z_1,z_2,z_3) has (z1,z2,z3,z4)(z_1,z_2,z_3,z_4) as preimage.

Kernel= {(z1,z2,z3,z4)ϕ(z1,z2,z3,z4)=(0,0,0,0)}\{(z_1,z_2,z_3,z_4)|\phi(z_1,z_2,z_3,z_4)=(0,0,0,0)\} Hence Kernel={(0,0,0,z4)}.\{(0,0,0,z_4)\}.

Now let f:f: KernelC\rightarrow \mathbb{C} be given by, f(0,0,0,z4)=z4.f(0,0,0,z_4)=z_4. Clearly, this is an isomorphism. Hence by first isomorphism theorem, C4/Ker ϕC3C4/Ker ϕC3.\mathbb{C}^4/Ker \ \phi\cong \mathbb{C}^3\Rightarrow \mathbb{C}^4/Ker \ \phi\cong \mathbb{C}^3.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment