Let ϕ:C4→C3 be defined as ϕ(z1,z2,z3,z4)=(z1,z2,z3). This projection map is clearly a homomorphism over C , since ϕ(z1+z1′,z2+z2′,z3+z3′,z4+z4′)=(z1+z1′,z2+z2′,z3+z3′)=(z1,z2,z3)+(z1′+z2′+z3′)=ϕ(z1,z2,z3,z4)+ϕ(z1′,z2′,z3′,z4′). Also its clearly, linear since, ϕ(λ(z1,z2,z3,z4))=ϕ(λz1,λz2,λz3,λz4) =(λz1,λz2,λz3)=λ(z1,z2,z3)=λϕ(z1,z2,z3,z4).
Surjectivity is immediate since (z1,z2,z3) has (z1,z2,z3,z4) as preimage.
Kernel= {(z1,z2,z3,z4)∣ϕ(z1,z2,z3,z4)=(0,0,0,0)} Hence Kernel={(0,0,0,z4)}.
Now let f: Kernel→C be given by, f(0,0,0,z4)=z4. Clearly, this is an isomorphism. Hence by first isomorphism theorem, C4/Ker ϕ≅C3⇒C4/Ker ϕ≅C3.
Comments
Leave a comment