Let "\\phi:\\mathbb{C}^4\\rightarrow \\mathbb{C}^3" be defined as "\\phi(z_1,z_2,z_3,z_4)=(z_1,z_2,z_3)." This projection map is clearly a homomorphism over "\\mathbb{C}" , since "\\phi(z_1+z_1',z_2+z_2',z_3+z_3',z_4+z_4')=(z_1+z_1',z_2+z_2',z_3+z_3')=(z_1,z_2,z_3)+(z_1'+z_2'+z_3')=\\phi(z_1,z_2,z_3,z_4)+\\phi(z_1',z_2',z_3',z_4')". Also its clearly, linear since, "\\phi(\\lambda(z_1,z_2,z_3,z_4))=\\phi(\\lambda z_1,\\lambda z_2,\\lambda z_3,\\lambda z_4)" "=(\\lambda z_1,\\lambda z_2,\\lambda z_3)=\\lambda(z_1,z_2,z_3)=\\lambda\\phi(z_1,z_2,z_3,z_4)."
Surjectivity is immediate since "(z_1,z_2,z_3)" has "(z_1,z_2,z_3,z_4)" as preimage.
Kernel= "\\{(z_1,z_2,z_3,z_4)|\\phi(z_1,z_2,z_3,z_4)=(0,0,0,0)\\}" Hence Kernel="\\{(0,0,0,z_4)\\}."
Now let "f:" Kernel"\\rightarrow \\mathbb{C}" be given by, "f(0,0,0,z_4)=z_4." Clearly, this is an isomorphism. Hence by first isomorphism theorem, "\\mathbb{C}^4\/Ker \\ \\phi\\cong \\mathbb{C}^3\\Rightarrow \\mathbb{C}^4\/Ker \\ \\phi\\cong \\mathbb{C}^3."
Comments
Leave a comment