Answer to Question #144440 in Linear Algebra for Sourav Mondal

Question #144440
Suppose a1 = (1, 0, 1), a2 = (0, 1, -2) and
a3 = (-1, -1, 0) are vectors in R³ and
f : R³ -> R is a linear functional such that
f(a1) = 1, f(a2) = -1 and f(a3) = 3. If
a = (p,q,r) belongs to R3, find f(a).
1
Expert's answer
2020-11-16T20:29:06-0500

A mapping f:VFf:V\to \Bbb{F} from the vector space VV to scalar field F\Bbb{F} is called a linear functional iff:


f(αx+βy)=αf(x)+βf(y)f(\alpha x+\beta y)=\alpha f(x)+\beta f(y)

holds for all x,yx,y in VV and for all α,β\alpha, \beta in F\Bbb{F}

Given


a=(p,q,r)=λ1(1,0,1)+λ2(0,1,2)+λ3(1,1,0)a=(p,q,r)=\lambda_1(1,0,1)+\lambda_2(0,1,-2)+\lambda_3(-1,-1,0)

λ1λ3=pλ2λ3=qλ12λ2=r\begin{matrix} \lambda_1-\lambda_3=p \\ \lambda_2-\lambda_3=q \\ \lambda_1-2\lambda_2=r \\ \end{matrix}

λ1=λ3+pλ2=λ3+qλ3+p2λ32q=r\begin{matrix} \lambda_1=\lambda_3+p \\ \lambda_2=\lambda_3+q \\ \lambda_3+p-2\lambda_3-2q=r \\ \end{matrix}


λ1=2p2qrλ2=pqrλ3=p2qr\begin{matrix} \lambda_1=2p-2q-r \\ \lambda_2=p-q-r \\ \lambda_3=p-2q-r \\ \end{matrix}

a=(2p2qr)a1+(pqr)a2+(p2qr)a3a=(2p-2q-r)a_1+(p-q-r)a_2+(p-2q-r)a_3

f(a)=(2p2qr)f(a1)+(pqr)f(a2)+f(a)=(2p-2q-r)f(a_1)+(p-q-r)f(a_2)+

+(p2qr)f(a3)=+(p-2q-r)f(a_3)=

=(2p2qr)(1)+(pqr)(1)+=(2p-2q-r)(1)+(p-q-r)(-1)+

+(p2qr)(3)=+(p-2q-r)(3)=

=2p2qrp+q+r+3p6q3r==2p-2q-r-p+q+r+3p-6q-3r=

=4p7q3r=4p-7q-3r

f(a)=4p7q3rf(a)=4p-7q-3r



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment