A mapping "f:V\\to \\Bbb{F}" from the vector space "V" to scalar field "\\Bbb{F}" is called a linear functional iff:
holds for all "x,y" in "V" and for all "\\alpha, \\beta" in "\\Bbb{F}"
Given
"\\begin{matrix}\n \\lambda_1-\\lambda_3=p \\\\\n \\lambda_2-\\lambda_3=q \\\\\n \\lambda_1-2\\lambda_2=r \\\\\n\\end{matrix}"
"\\begin{matrix}\n \\lambda_1=\\lambda_3+p \\\\\n \\lambda_2=\\lambda_3+q \\\\\n \\lambda_3+p-2\\lambda_3-2q=r \\\\\n\\end{matrix}"
"a=(2p-2q-r)a_1+(p-q-r)a_2+(p-2q-r)a_3"
"f(a)=(2p-2q-r)f(a_1)+(p-q-r)f(a_2)+"
"+(p-2q-r)f(a_3)="
"=(2p-2q-r)(1)+(p-q-r)(-1)+"
"+(p-2q-r)(3)="
"=2p-2q-r-p+q+r+3p-6q-3r="
"=4p-7q-3r"
"f(a)=4p-7q-3r"
Comments
Leave a comment