A mapping f:V→F from the vector space V to scalar field F is called a linear functional iff:
f(αx+βy)=αf(x)+βf(y) holds for all x,y in V and for all α,β in F
Given
a=(p,q,r)=λ1(1,0,1)+λ2(0,1,−2)+λ3(−1,−1,0)
λ1−λ3=pλ2−λ3=qλ1−2λ2=r
λ1=λ3+pλ2=λ3+qλ3+p−2λ3−2q=r
λ1=2p−2q−rλ2=p−q−rλ3=p−2q−r
a=(2p−2q−r)a1+(p−q−r)a2+(p−2q−r)a3
f(a)=(2p−2q−r)f(a1)+(p−q−r)f(a2)+
+(p−2q−r)f(a3)=
=(2p−2q−r)(1)+(p−q−r)(−1)+
+(p−2q−r)(3)=
=2p−2q−r−p+q+r+3p−6q−3r=
=4p−7q−3r
f(a)=4p−7q−3r
Comments
Leave a comment