Question #143925
A company produces three products P, Q and R using raw materials A, B and C. One unit of P requires 1, 2 and 3 units of A, B and C respectively. One unit of Q requires 2, 3 and 2 units of A, B and C respectively. One unit of R requires 1, 2 and 2 units of A, B and C respectively. The number of units available for raw material A, B and C are 8, 14 and 13 units respectively. Using the matrix method, determine the number of units of each product to produce in order to utilize completely the available resources.
1
Expert's answer
2020-11-17T17:24:12-0500

A(8)B(14)C(13)P123Q232R122\def\arraystretch{1.5} \begin{array}{c|c:c:c} & A(8) & B(14) & C(13)\\ \hline P & 1& 2& 3\\ \hdashline Q& 2 & 3& 2\\ \hdashline R & 1& 2 & 2 \end{array}

A=(121232322),A=\begin{pmatrix} 1& 2 &1 \\ 2& 3 & 2\\ 3& 2 & 2 \end{pmatrix},

B=(81413),B=\begin{pmatrix} 8 \\ 14\\ 13 \end{pmatrix},

X=(PQR).X=\begin{pmatrix} P \\ Q\\ R \end{pmatrix}.


A=121232322=1(64)2(46)+1(49)=10.|A|=\begin{vmatrix} 1& 2 &1 \\ 2& 3 & 2\\ 3& 2 & 2 \end{vmatrix}=1\cdot(6-4)-2\cdot(4-6)+1\cdot(4-9)=1\neq 0.


a11=3222=2,a_{11}=\begin{vmatrix} 3&2 \\ 2 & 2 \end{vmatrix}=2, a12=2232=2,a_{12}=-\begin{vmatrix} 2&2 \\ 3 & 2 \end{vmatrix}=2, a13=2332=5,a_{13}=\begin{vmatrix} 2&3 \\ 3 & 2 \end{vmatrix}=-5,

a21=2122=2,a_{21}=-\begin{vmatrix} 2&1 \\ 2 & 2 \end{vmatrix}=-2, a22=1132=1,a_{22}=\begin{vmatrix} 1&1 \\ 3 & 2 \end{vmatrix}=-1, a23=1232=4,a_{23}=-\begin{vmatrix} 1&2 \\ 3 & 2 \end{vmatrix}=4,

a31=2132=1,a_{31}=\begin{vmatrix} 2&1 \\ 3 & 2 \end{vmatrix}=1, a32=1122=0,a_{32}=-\begin{vmatrix} 1&1 \\ 2 & 2 \end{vmatrix}=0, a33=1223=1.a_{33}=\begin{vmatrix} 1&2 \\ 2 & 3 \end{vmatrix}=-1.


adjA=(225214101)T=(221210541).adjA={\begin{pmatrix} 2 & 2 &-5 \\ -2 & -1 &4 \\ 1& 0& -1 \end{pmatrix}}^{T}={\begin{pmatrix} 2& -2 &1 \\ 2& -1& 0\\ -5&4 & -1 \end{pmatrix}}.


A1=adjAA=(221210541).A^{-1}=\frac{adjA}{|A|}=\begin{pmatrix} 2& -2 &1 \\ 2& -1& 0\\ -5&4 & -1 \end{pmatrix}.


X=A1B.X=A^{-1}B.


(PQR)=(221210541)(81413)=(1628+13161440+5613)=(123).\begin{pmatrix} P \\ Q\\ R \end{pmatrix}=\begin{pmatrix} 2& -2 &1 \\ 2& -1& 0\\ -5&4 & -1 \end{pmatrix}\cdot \begin{pmatrix} 8 \\ 14\\ 13 \end{pmatrix}=\begin{pmatrix} 16-28+13 \\ 16-14\\ -40+56-13 \end{pmatrix}=\begin{pmatrix} 1 \\ 2\\ 3 \end{pmatrix}.

P=1,Q=2,R=3.P=1, Q=2, R=3.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS