Given the ordered basis "B = \\{ a_1,a_2,a_3\\} = \\text{\\textbraceleft} \\begin{pmatrix}1\\\\0\\\\-1 \\end{pmatrix}, \\begin{pmatrix}1\\\\1\\\\1 \\end{pmatrix}, \\begin{pmatrix}1\\\\0\\\\0 \\end{pmatrix}\\text{\\textbraceright}"
then the expression of "v = \\begin{pmatrix}a\\\\b\\\\c \\end{pmatrix}" as a linear combination will be of the form
"\\begin{pmatrix}a\\\\b\\\\c \\end{pmatrix} = x\\begin{pmatrix}1\\\\0\\\\-1 \\end{pmatrix} + y\\begin{pmatrix}1\\\\1\\\\1 \\end{pmatrix} + z\\begin{pmatrix}1\\\\0\\\\0 \\end{pmatrix} = \\begin{pmatrix}x+y+z\\\\y\\\\-x+y \\end{pmatrix} \\text{ where } x,y,z \\in \\mathbb{R}"
"\\begin{pmatrix}a\\\\b\\\\c \\end{pmatrix}= \\begin{pmatrix}x+y+z\\\\y\\\\-x+y \\end{pmatrix} \\text{then we have the system of equations below}"
"\\begin{alignedat}{3} x+y+z = a \\dots(1)\\\\ y=b \\dots(2)\\\\-x+y=c \\dots(3)\\end{alignedat}"
"\\text{From (2) we have y=b; inserting this into (3) we have: }\\\\ -x+ b=c \\text{ then we have } -x=c-b\\\\\\text{then } x=b-c \\\\ \\text{Inserting the values of x and y into (1) we have }\\\\ (b-c)+b+z=a \\implies z+2b-c=a\\\\ \\implies z = a-2b+c"
"\\therefore x =b-c;y=b \\text{ and } z=a-2b+c"
"\\text{Therefore v as the linear combination of the ordered basis is given by } \\\\\n\\boxed{v=\\begin{pmatrix}a\\\\b\\\\c \\end{pmatrix} = (b-c)\\begin{pmatrix}1\\\\0\\\\-1 \\end{pmatrix} + b\\begin{pmatrix}1\\\\1\\\\1 \\end{pmatrix} + (a-2b+c)\\begin{pmatrix}1\\\\0\\\\0 \\end{pmatrix}}"
Comments
Leave a comment