Given that T : R 3 → R 3 T:\R^3\rightarrow \R^3 T : R 3 → R 3 is linear operator given by
T ( x 1 , x 2 , x 3 ) = ( x 1 , x 3 , − 2 x 2 − x 3 ) T(x_1,x_2,x_3)=(x_1,x_3,-2x_2-x_3) T ( x 1 , x 2 , x 3 ) = ( x 1 , x 3 , − 2 x 2 − x 3 ) Consider the standard basis of R 3 \R^3 R 3 which are e 1 , e 2 , e 3 e_1,e_2,e_3 e 1 , e 2 , e 3 , thus
T ( e 1 ) = a 1 e 1 + a 2 e 2 + a 3 e 3 = ( a 1 , a 2 , a 3 ) = ( 1 , 0 , 0 ) T ( e 2 ) = b 1 e 1 + b 2 e 2 + b 3 e 3 = ( b 1 , b 2 , b 3 ) = ( 0 , 0 , − 2 ) T ( e 3 ) = c 1 e 1 + c 2 e 2 + c 3 e 3 = ( c 1 , c 2 , c 3 ) = ( 0 , 1 , − 1 ) T(e_1)=a_1e_1+a_2e_2+a_3e_3=(a_1,a_2,a_3)=(1,0,0)\\
T(e_2)=b_1e_1+b_2e_2+b_3e_3=(b_1,b_2,b_3)=(0,0,-2)\\
T(e_3)=c_1e_1+c_2e_2+c_3e_3=(c_1,c_2,c_3)=(0,1,-1) T ( e 1 ) = a 1 e 1 + a 2 e 2 + a 3 e 3 = ( a 1 , a 2 , a 3 ) = ( 1 , 0 , 0 ) T ( e 2 ) = b 1 e 1 + b 2 e 2 + b 3 e 3 = ( b 1 , b 2 , b 3 ) = ( 0 , 0 , − 2 ) T ( e 3 ) = c 1 e 1 + c 2 e 2 + c 3 e 3 = ( c 1 , c 2 , c 3 ) = ( 0 , 1 , − 1 ) Thus, matrix of T with respect to standard basis is
M = M ( T ) v v = [ 1 0 0 0 0 − 2 0 1 − 1 ] M=M(T)_v^v=\begin{bmatrix}
1 &0&0\\
0&0&-2\\
0&1&-1
\end{bmatrix} M = M ( T ) v v = ⎣ ⎡ 1 0 0 0 0 1 0 − 2 − 1 ⎦ ⎤ Where v = ( e 1 , e 2 , e 3 ) v=(e_1,e_2,e_3) v = ( e 1 , e 2 , e 3 ) .
Now, polynomial of T is given f ( x ) = − x 3 + 2 f(x)=-x^3+2 f ( x ) = − x 3 + 2 , thus operator
f ( T ) = − T 3 + 3 I ⟺ − M 3 + 2 I 3 × 3 f(T)=-T^3+3I\iff -M^3+2I_{3\times 3} f ( T ) = − T 3 + 3 I ⟺ − M 3 + 2 I 3 × 3
Now,
M 3 = ( 1 0 0 0 2 2 0 − 1 3 ) ⟹ − M 3 = ( − 1 0 0 0 − 2 − 2 0 1 − 3 ) ⟹ − M 3 + 2 I 3 × 3 = ( 1 0 0 0 0 − 2 0 1 − 1 ) M^3=\left( \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 2 & 2 \\ 0 & -1 & 3 \end{array} \right)\\
\implies -M^3=\left( \begin{array}{ccc} -1 & 0 & 0 \\ 0 &- 2 & -2 \\ 0 & 1 & -3 \end{array} \right)\\
\implies -M^3+2I_{3\times 3}=\left( \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 0& -2 \\ 0 & 1 & -1\end{array} \right)\\ M 3 = ⎝ ⎛ 1 0 0 0 2 − 1 0 2 3 ⎠ ⎞ ⟹ − M 3 = ⎝ ⎛ − 1 0 0 0 − 2 1 0 − 2 − 3 ⎠ ⎞ ⟹ − M 3 + 2 I 3 × 3 = ⎝ ⎛ 1 0 0 0 0 1 0 − 2 − 1 ⎠ ⎞ Thus,
f ( T ) = ( 1 0 0 0 0 − 2 0 1 − 1 ) f(T)=\left( \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 0& -2 \\ 0 & 1 & -1\end{array} \right)\\ f ( T ) = ⎝ ⎛ 1 0 0 0 0 1 0 − 2 − 1 ⎠ ⎞
Comments