Answer to Question #146817 in Linear Algebra for Sourav Mondal

Question #146817
Are there values of (a) belongs to C for which the matrix [
1 0 0
0 -1/√2 1/√2
0 1/√2. a
]
is unitary? Justify your answer
1
Expert's answer
2020-12-01T15:52:46-0500

"\\displaystyle\\textbf{\\textsf{Yes.}}\\\\\n\n\\textsf{Let}\\, A = \\begin{pmatrix}\n1 & 0 & 0\\\\\n0 & -\\frac{1}{\\sqrt{2}} & \\frac{1}{\\sqrt{2}} \\\\\n0 & \\frac{1}{\\sqrt{2}} & a\n\\end{pmatrix} = \\begin{pmatrix}\n1 + 0i & 0 + 0i & 0 + 0i\\\\\n0 + 0i & -\\frac{1}{\\sqrt{2}} + 0i & \\frac{1}{\\sqrt{2}} + 0i\\\\\n0 + 0i & \\frac{1}{\\sqrt{2}} + 0i & a + 0i\n\\end{pmatrix}\\\\\n\n\n\\textsf{Conjugate of}\\, A = A^{c} = \\begin{pmatrix}\n1 & 0 & 0\\\\\n0 & -\\frac{1}{\\sqrt{2}} & \\frac{1}{\\sqrt{2}} \\\\\n0 & \\frac{1}{\\sqrt{2}} & a\n\\end{pmatrix} =\\begin{pmatrix}\n1 - 0i & 0 - 0i & 0 - 0i\\\\\n0 - 0i & -\\frac{1}{\\sqrt{2}} - 0i & \\frac{1}{\\sqrt{2}} - 0i\\\\\n0 - 0i & \\frac{1}{\\sqrt{2}} - 0i & a - 0i\n\\end{pmatrix} = \\begin{pmatrix}\n1 & 0 & 0\\\\\n0 & -\\frac{1}{\\sqrt{2}} & \\frac{1}{\\sqrt{2}} \\\\\n0 & \\frac{1}{\\sqrt{2}} & a\n\\end{pmatrix}\\\\\n\n\n\\textsf{Conjugate transpose of}\\, A = A^{\\ast} = \\begin{pmatrix}\n1 & 0 & 0\\\\\n0 & -\\frac{1}{\\sqrt{2}} & \\frac{1}{\\sqrt{2}}\\\\\n0 & \\frac{1}{\\sqrt{2}}& a\n\\end{pmatrix}\\\\\n\n\n\nAA^{\\ast} = A^2 = \\begin{pmatrix}\n1 & 0 & 0\\\\\n0 & 1 & \\frac{a}{\\sqrt{2}} - \\frac{1}{2}\\\\\n0 & \\frac{a}{\\sqrt{2}} - \\frac{1}{2}& a^2 + \\frac{1}{2}\n\\end{pmatrix}\\\\\n\n\n\\textsf{By definition}\\, AA^{\\ast} = \\begin{pmatrix}\n1 & 0 & 0\\\\\n0 & 1 & 0\\\\\n0 & 0 & 1\n\\end{pmatrix}\\\\\n\n\n\\textsf{Comparing both elements}\\\\\n\n\na^2 + \\frac{1}{2} = 1 \\\\\n\na^2 = \\frac{1}{2} \\\\\n\na = \\pm\\frac{1}{\\sqrt{2}} = \\pm\\frac{\\sqrt{2}}{2}\\\\\n\n\n\\frac{a}{\\sqrt{2}} - \\frac{1}{2} = 0\\\\\n\n\\frac{a}{\\sqrt{2}} = \\frac{1}{2} \\\\\n\na = \\frac{\\sqrt{2}}{2}\\\\\n\n\n\\textsf{The positive value of}\\, a \\,\\,\\textsf{satisfies}\\\\\n\\textsf{the definition of a unitary matrix}.\\\\\n\\textsf{The positive value satisfies the}\\\\\n\n\\textsf{identity matrix because on}\\\\\n\n\\textsf{substituting the negative value of}\\, a, \\\\\n\n\\textsf{we do not have an identity matrix,}\\\\\n\n\\textsf{the}\\, 1's \\, \\textsf{on substitution of}\\\\\n\n\\textsf{the positive value}\\,a\\, \\textsf{becomes}\\, -1\\\\\n\n\\textsf{on the substitution of the negative value}\\\\\n\n\\textsf{of}\\,a.\\\\\n\n\\textsf{Also,}\\,\\,\\frac{\\sqrt{2}}{2}\\in \\mathbb{C}."


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog
APPROVED BY CLIENTS