"1.\\text{ Kernel of a transformation}.\\\\\nT: \\mathbb{R}^4\\longrightarrow \\mathbb{R}^4\\\\\nT(x_1,x_2,x_3,x_4)=(x_1-x_2,x_2-x_3,x_3-x_4,x_4-x_1)\\\\\n\\begin{cases}\nx_1-x_2=0\\\\\nx_2-x_3=0\\\\\nx_3-x_4=0\\\\\nx_4-x_1=0\n\\end{cases}\\\\\n\\begin{pmatrix}\n1&-1&0&0\\\\\n0&1&-1&0\\\\\n0&0&1&-1\\\\\n-1&0&0&1\n\\end{pmatrix}\\\\\n\\text{We add the first row to the fourth row:}\\\\\n\\begin{pmatrix}\n1&-1&0&0\\\\\n0&1&-1&0\\\\\n0&0&1&-1\\\\\n0&-1&0&1\n\\end{pmatrix}\\\\\n\\text{We add the second row to the fourth row:}\\\\\n\\begin{pmatrix}\n1&-1&0&0\\\\\n0&1&-1&0\\\\\n0&0&1&-1\\\\\n0&0&-1&1\n\\end{pmatrix}\\\\\n\\text{We add the third row to the fourth row:}\\\\\n\\begin{pmatrix}\n1&-1&0&0\\\\\n0&1&-1&0\\\\\n0&0&1&-1\\\\\n0&0&0&0\n\\end{pmatrix}\\\\\n\\begin{cases}\nx_1-x_2=0\\\\\nx_2-x_3=0\\\\\nx_3-x_4=0\n\\end{cases}\\\\\n\\begin{cases}\nx_1=x_2\\\\\nx_2=x_3\\\\\nx_3=x_4\n\\end{cases}\\\\\nx_1=x_2=x_3=x_4\\\\\n\\text{ker}(T)=\\{(x_1,x_2,x_3,x_4)\\in\\mathbb{R}^4|x_1=x_2=x_3=x_4\\}.\\\\\n\\text{Hence } \\{(1,1,1,1)\\}\\text{ is a basis of ker(T)}.\\\\\n2.\\text{ Range space}.\\\\\n\\text{Let } (a,b,c,d)\\in \\mathbb{R}^4.\\\\\n\\mathbb{R}^4\\text{ is a codomain of T}.\\\\\n\\text{Then:}\\\\\n\\begin{cases}\nx_1-x_2=a\\\\\nx_2-x_3=b\\\\\nx_3-x_4=c\\\\\nx_4-x_1=d\n\\end{cases}\\\\\n\\text{We have shown above that the rank of the coefficient matrix equals 3}.\\\\\n\\text{Using Rouch\u00e9\u2013Capelli theorem:}\\\\\n\\text{rank}\n\\begin{pmatrix}\n1&-1&0&0&a\\\\\n0&1&-1&0&b\\\\\n0&0&1&-1&c\\\\\n-1&0&0&1&d\n\\end{pmatrix}=3\\\\\n\\text{So the range space of T consists of all the vectors }(a,b,c,d)\\in\\mathbb{R}^4\\\\\n\\text{such that the last equality is true.} \\\\\n\\begin{pmatrix}\n1&-1&0&0&a\\\\\n0&1&-1&0&b\\\\\n0&0&1&-1&c\\\\\n-1&0&0&1&d\n\\end{pmatrix}\\sim\n\\begin{pmatrix}\n1&-1&0&0&a\\\\\n0&1&-1&0&b\\\\\n0&0&1&-1&c\\\\\n0&-1&0&1&a+d\n\\end{pmatrix}\\sim\n\\begin{pmatrix}\n1&-1&0&0&a\\\\\n0&1&-1&0&b\\\\\n0&0&1&-1&c\\\\\n0&0&-1&1&a+b+d\n\\end{pmatrix}\\sim\n\\begin{pmatrix}\n1&-1&0&0&a\\\\\n0&1&-1&0&b\\\\\n0&0&1&-1&c\\\\\n0&0&0&0&a+b+c+d\n\\end{pmatrix}\\\\\n\\text{Then } a+b+c+d=0.\\\\\n\\text{The range space of T consists of all the vectors }(a,b,c,d)\\in\\mathbb{R}^4\\\\\n\\text{such that }a+b+c+d=0."
Comments
Leave a comment