Find the range space and a basis for the
kernel of the linear transformation
T : R4 ->R4 defined by
T(x1, x2, x3, x4) = (x1 - x2, x2 - x3, x3 - x4, x4 - x1).
1
Expert's answer
2020-12-02T11:06:15-0500
1. Kernel of a transformation.T:R4⟶R4T(x1,x2,x3,x4)=(x1−x2,x2−x3,x3−x4,x4−x1)⎩⎨⎧x1−x2=0x2−x3=0x3−x4=0x4−x1=0⎝⎛100−1−11000−11000−11⎠⎞We add the first row to the fourth row:⎝⎛1000−110−10−11000−11⎠⎞We add the second row to the fourth row:⎝⎛1000−11000−11−100−11⎠⎞We add the third row to the fourth row:⎝⎛1000−11000−11000−10⎠⎞⎩⎨⎧x1−x2=0x2−x3=0x3−x4=0⎩⎨⎧x1=x2x2=x3x3=x4x1=x2=x3=x4ker(T)={(x1,x2,x3,x4)∈R4∣x1=x2=x3=x4}.Hence {(1,1,1,1)} is a basis of ker(T).2. Range space.Let (a,b,c,d)∈R4.R4 is a codomain of T.Then:⎩⎨⎧x1−x2=ax2−x3=bx3−x4=cx4−x1=dWe have shown above that the rank of the coefficient matrix equals 3.Using Roucheˊ–Capelli theorem:rank⎝⎛100−1−11000−11000−11abcd⎠⎞=3So the range space of T consists of all the vectors (a,b,c,d)∈R4such that the last equality is true.⎝⎛100−1−11000−11000−11abcd⎠⎞∼⎝⎛1000−110−10−11000−11abca+d⎠⎞∼⎝⎛1000−11000−11−100−11abca+b+d⎠⎞∼⎝⎛1000−11000−11000−10abca+b+c+d⎠⎞Then a+b+c+d=0.The range space of T consists of all the vectors (a,b,c,d)∈R4such that a+b+c+d=0.
Comments