The matrix
[ 3 − 4 2 0 − 9 12 − 6 0 − 6 8 − 4 0 ] \left[
\begin{array}{cccc}
3 & -4 & 2 & 0\\
-9 & 12 & -6 & 0\\
-6 & 8 & -4 & 0
\end{array}
\right] ⎣ ⎡ 3 − 9 − 6 − 4 12 8 2 − 6 − 4 0 0 0 ⎦ ⎤
is equivalent to the matrix
[ 3 − 4 2 0 3 − 4 2 0 3 − 4 2 0 ] \left[
\begin{array}{cccc}
3 & -4 & 2 & 0\\
3 & -4 & 2 & 0\\
3 & -4 & 2 & 0
\end{array}
\right] ⎣ ⎡ 3 3 3 − 4 − 4 − 4 2 2 2 0 0 0 ⎦ ⎤ after dividing each element of the second row by -3 and each element of the
third row by -2. The last matrix is equivalent to the matrix
[ 3 − 4 2 0 0 0 0 0 0 0 0 0 ] \left[
\begin{array}{cccc}
3 & -4 & 2 & 0\\
0 & 0 & 0 & 0\\
0 & 0 & 0 & 0
\end{array}
\right] ⎣ ⎡ 3 0 0 − 4 0 0 2 0 0 0 0 0 ⎦ ⎤ after subtraction from second and third rows the first row.
Therefore, the system is equivalent to the equation 3 x 1 − 4 x 2 + 2 x 3 = 0 3x_1-4x_2+2x_3=0 3 x 1 − 4 x 2 + 2 x 3 = 0 which has the following infinitely many solutions:
{ x 1 = 4 3 x 2 − 2 3 x 3 x 2 ∈ R x 3 ∈ R \begin{cases}
x_1=\frac{4}{3}x_2-\frac{2}{3}x_3\\
x_2\in\mathbb R\\
x_3\in \mathbb R
\end{cases} ⎩ ⎨ ⎧ x 1 = 3 4 x 2 − 3 2 x 3 x 2 ∈ R x 3 ∈ R
Comments