Let T : R3 —> R3 be defined by
T(xi, x2, x3) = (3x1 + x3, - 2x1 + x2,
- x1 + 2x2 + 4x3)
Show that T^(-1) exists. Give the expression for T^(-1)(x1 , x2, x3) for T above.
Let "T :\\mathbb R^3\\to\\mathbb R^3" be defined by "T(x_1, x_2, x_3) = (3x_1 + x_3, - 2x_1 + x_2, - x_1 + 2x_2 + 4x_3)".
Let us fix arbitrary "(a,b,c)\\in \\mathbb R^3" and consider the equation "T(x_1, x_2, x_3) =(a,b,c)" which is equivalent to the system:
"\\begin{cases}3x_1 + x_3=a\\\\ - 2x_1 + x_2=b\\\\ - x_1 + 2x_2 + 4x_3=c\\end{cases}."
Since the determinant "\\left| \\begin{array}{ccc}3 &0 & 1\\\\ -2 & 1 & 0\\\\ -1 & 2 & 4 \\end{array} \\right|=12-4+1=9\\ne 0" , the system has a unique solution for each "(a,b,c)\\in \\mathbb R^3". Therefore, "T :\\mathbb R^3\\to\\mathbb R^3" is a bijection, and "T^{-1}" exists.
To give the expression for "T^{-1}" let us solve the above system.
"\\begin{cases} x_3=a-3x_1 \\\\ x_2=b+2x_1 \\\\ - x_1 + 2(b+2x_1) + 4(a-3x_1)=c\\end{cases}"
"\\begin{cases} x_3=a-3x_1 \\\\ x_2=b+2x_1 \\\\ - x_1 + 2b+4x_1 + 4a-12x_1=c\\end{cases}"
"\\begin{cases} x_3=a-3x_1 \\\\ x_2=b+2x_1 \\\\ x_1=\\frac{1}{9}(4a+2b-c)\\end{cases}"
"\\begin{cases} x_3=a-\\frac{3}{9}(4a+2b-c) \\\\ x_2=b+\\frac{2}{9}(4a+2b-c) \\\\ x_1=\\frac{1}{9}(4a+2b-c)\\end{cases}"
"\\begin{cases} x_3=a-\\frac{4}{3}a-\\frac{2}{3}b+\\frac{1}{3}c \\\\ x_2=b+\\frac{8}{9}a+\\frac{4}{9}b-\\frac{2}{9}c \\\\ x_1=\\frac{1}{9}(4a+2b-c)\\end{cases}"
"\\begin{cases} x_3=-\\frac{1}{3}a-\\frac{2}{3}b+\\frac{1}{3}c \\\\ x_2=\\frac{8}{9}a+\\frac{13}{9}b-\\frac{2}{9}c \\\\ x_1=\\frac{1}{9}(4a+2b-c)\\end{cases}"
"\\begin{cases} x_3=\\frac{1}{3}(-a-2b+c) \\\\ x_2=\\frac{1}{9}(8a+13b-2c) \\\\ x_1=\\frac{1}{9}(4a+2b-c)\\end{cases}"
Therefore, "T^{-1}(x_1,x_2,x_3)=\\left(\\frac{1}{3}( -x_1-2x_2+x_3) , \\frac{1}{9}(8x_1+13x_2-2x_3),\\frac{1}{9}(4x_1+2x_2-x_3)\\right)"
Comments
Leave a comment