Answer to Question #147719 in Linear Algebra for Daher

Question #147719
Solve the system of following equation by guass elimination method
3x1+2x2+6x3=2
6x1-7x2-11x3=8
-5x1+9x2+3x3=10
1
Expert's answer
2020-12-01T06:11:17-0500

Let us solve the system of following equation by Guass elimination method:


{3x1+2x2+6x3=26x17x211x3=85x1+9x2+3x3=10\begin{cases}3x_1+2x_2+6x_3=2\\ 6x_1-7x_2-11x_3=8\\ -5x_1+9x_2+3x_3=10 \end{cases}


The augmented matrix  of the systems is the following:


[32626711859310](r2r22r1r3r3+2r1)[32620112341131514]r1r13r3\left[ \begin{array}{cccc} 3 & 2 & 6 & 2\\ 6 & -7 & -11 & 8\\ -5 & 9 & 3 & 10 \end{array} \right] {r_2\to r_2-2r_1\choose r_3\to r_3+2r_1} \left[ \begin{array}{cccc} 3 & 2 & 6 & 2\\ 0 & -11 & -23 & 4\\ 1 & 13 & 15 & 14 \end{array} \right] {r_1\to r_1-3r_3}


[03739400112341131514]r1r13r2[0430520112341131514]r2r23r1\left[ \begin{array}{cccc} 0 & -37 & -39 & -40\\ 0 & -11 & -23 & 4\\ 1 & 13 & 15 & 14 \end{array} \right] {r_1\to r_1-3r_2} \left[ \begin{array}{cccc} 0 & -4 & 30 & -52\\ 0 & -11 & -23 & 4\\ 1 & 13 & 15 & 14 \end{array} \right] {r_2\to r_2-3r_1}


[043052011131601131514]r1r1+4r2[00422588011131601131514]\left[ \begin{array}{cccc} 0 & -4 & 30 & -52\\ 0 & 1 & -113 & 160\\ 1 & 13 & 15 & 14 \end{array} \right] {r_1\to r_1+4r_2} \left[ \begin{array}{cccc} 0 & 0 & -422 & 588\\ 0 & 1 & -113 & 160\\ 1 & 13 & 15 & 14 \end{array} \right]


Consequently, we have the following system:


{422x3=588x2113x3=160x1+13x2+15x3=14\begin{cases}-422x_3=588\\ x_2-113x_3=160\\ x_1+13x_2+15x_3=14 \end{cases}


{x3=294211x2=160+113(294211)x1=1413x215(294211)\begin{cases}x_3=-\frac{294}{211}\\ x_2=160+113(-\frac{294}{211})\\ x_1=14-13x_2-15(-\frac{294}{211}) \end{cases}


{x3=294211x2=538211x1=1413(538211)15(294211)\begin{cases}x_3=-\frac{294}{211}\\ x_2=\frac{538}{211}\\ x_1=14-13(\frac{538}{211})-15(-\frac{294}{211}) \end{cases}


{x3=294211x2=538211x1=370211\begin{cases}x_3=-\frac{294}{211}\\ x_2=\frac{538}{211}\\ x_1=\frac{370}{211} \end{cases}




Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment