Let us solve the system of following equation by Guass elimination method:
"\\begin{cases}3x_1+2x_2+6x_3=2\\\\\n6x_1-7x_2-11x_3=8\\\\\n-5x_1+9x_2+3x_3=10\n\\end{cases}"
The augmented matrix of the systems is the following:
"\\left[ \n\\begin{array}{cccc} \n3 & 2 & 6 & 2\\\\\n6 & -7 & -11 & 8\\\\\n-5 & 9 & 3 & 10\n\\end{array}\n\\right]\n {r_2\\to r_2-2r_1\\choose r_3\\to r_3+2r_1}\n\n\\left[ \n\\begin{array}{cccc} \n3 & 2 & 6 & 2\\\\\n0 & -11 & -23 & 4\\\\\n1 & 13 & 15 & 14\n\\end{array}\n\\right]\n\n {r_1\\to r_1-3r_3}"
"\\left[ \n\\begin{array}{cccc} \n0 & -37 & -39 & -40\\\\\n0 & -11 & -23 & 4\\\\\n1 & 13 & 15 & 14\n\\end{array}\n\\right]\n\n{r_1\\to r_1-3r_2}\n\n\\left[ \n\\begin{array}{cccc} \n0 & -4 & 30 & -52\\\\\n0 & -11 & -23 & 4\\\\\n1 & 13 & 15 & 14\n\\end{array}\n\\right]\n\n{r_2\\to r_2-3r_1}"
"\\left[ \n\\begin{array}{cccc} \n0 & -4 & 30 & -52\\\\\n0 & 1 & -113 & 160\\\\\n1 & 13 & 15 & 14\n\\end{array}\n\\right]\n\n{r_1\\to r_1+4r_2}\n\n\\left[ \n\\begin{array}{cccc} \n0 & 0 & -422 & 588\\\\\n0 & 1 & -113 & 160\\\\\n1 & 13 & 15 & 14\n\\end{array}\n\\right]"
Consequently, we have the following system:
"\\begin{cases}-422x_3=588\\\\\nx_2-113x_3=160\\\\\nx_1+13x_2+15x_3=14\n\\end{cases}"
"\\begin{cases}x_3=-\\frac{294}{211}\\\\\nx_2=160+113(-\\frac{294}{211})\\\\\nx_1=14-13x_2-15(-\\frac{294}{211})\n\\end{cases}"
"\\begin{cases}x_3=-\\frac{294}{211}\\\\\n\nx_2=\\frac{538}{211}\\\\\n\nx_1=14-13(\\frac{538}{211})-15(-\\frac{294}{211})\n\\end{cases}"
"\\begin{cases}x_3=-\\frac{294}{211}\\\\\n\nx_2=\\frac{538}{211}\\\\\n\nx_1=\\frac{370}{211}\n\\end{cases}"
Comments
Leave a comment