Let us solve the system of following equation by Guass elimination method:
⎩⎨⎧3x1+2x2+6x3=26x1−7x2−11x3=8−5x1+9x2+3x3=10
The augmented matrix of the systems is the following:
⎣⎡36−52−796−1132810⎦⎤(r3→r3+2r1r2→r2−2r1)⎣⎡3012−11136−23152414⎦⎤r1→r1−3r3
⎣⎡001−37−1113−39−2315−40414⎦⎤r1→r1−3r2⎣⎡001−4−111330−2315−52414⎦⎤r2→r2−3r1
⎣⎡001−411330−11315−5216014⎦⎤r1→r1+4r2⎣⎡0010113−422−1131558816014⎦⎤
Consequently, we have the following system:
⎩⎨⎧−422x3=588x2−113x3=160x1+13x2+15x3=14
⎩⎨⎧x3=−211294x2=160+113(−211294)x1=14−13x2−15(−211294)
⎩⎨⎧x3=−211294x2=211538x1=14−13(211538)−15(−211294)
⎩⎨⎧x3=−211294x2=211538x1=211370
Comments
Leave a comment