Let us consider the system
{x1+3x2=23x1+hx2=k\begin{cases} x_1 + 3x_2 = 2\\ 3x_1+ hx_2 = k \end{cases}{x1+3x2=23x1+hx2=k (*)
Let us find the determinant Δ=∣133h∣=h−9\Delta=\left|\begin{array}{cc}1 & 3 \\ 3 & h\end{array}\right|=h-9Δ=∣∣133h∣∣=h−9 .
(a) If Δ=0\Delta=0Δ=0, then h=9h=9h=9, and the system (*) is equivalent to the system {x1+3x2=2x1+3x2=k3\begin{cases} x_1 + 3x_2 = 2\\ x_1+ 3x_2 = \frac{k}{3} \end{cases}{x1+3x2=2x1+3x2=3k .
If k3≠2\frac{k}{3}\ne 23k=2, that is k≠6k\ne 6k=6, then the system (*) has no solution.
(b) If Δ≠0\Delta\ne 0Δ=0, that is h≠9h\ne 9h=9, then for any kkk the system (8) has a unique solution.
(c) If Δ=0\Delta=0Δ=0, that is h=9h=9h=9, and k=6k=6k=6, then the system (*) is equivalent to the system
{x1+3x2=2x1+3x2=2\begin{cases} x_1 + 3x_2 = 2\\ x_1+ 3x_2 =2 \end{cases}{x1+3x2=2x1+3x2=2 , and therefore, the system (*) has infinitely many solutions.
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments