Question #147961
Find a basis for the null space, row space and column space of matrix
1
Expert's answer
2020-12-02T19:05:07-0500

Let the matrix is A=[100101010011]A=\begin{bmatrix} 1 & 0 & 0 & 1\\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \end{bmatrix}


Basis for row space of A={[1001],[0101],[0011]}A=\begin{Bmatrix} [1 & 0 & 0 & 1], [0 & 1 & 0 & 1],[0 & 0 & 1 & 1] \end{Bmatrix}


In the 1, 2 and 3, it contains pivot hence,

={[100010001]}=\{\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}\}

If Ax=0Ax=0

[x1x2x3x4]\begin{bmatrix} x_1\\ x_2 \\ x_3\\ x_4 \end{bmatrix} =[1111]=\begin{bmatrix} -1\\ -1 \\ -1\\ 1 \end{bmatrix}


Hence, it is much better for the null space =[1111]=\begin{bmatrix} -1\\ -1 \\ -1\\ 1 \end{bmatrix}



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS