Let the matrix is A=[100101010011]A=\begin{bmatrix} 1 & 0 & 0 & 1\\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \end{bmatrix}A=⎣⎡100010001111⎦⎤
Basis for row space of A={[1001],[0101],[0011]}A=\begin{Bmatrix} [1 & 0 & 0 & 1], [0 & 1 & 0 & 1],[0 & 0 & 1 & 1] \end{Bmatrix}A={[1001],[0101],[0011]}
In the 1, 2 and 3, it contains pivot hence,
={[100010001]}=\{\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}\}={⎣⎡100010001⎦⎤}
If Ax=0Ax=0Ax=0
[x1x2x3x4]\begin{bmatrix} x_1\\ x_2 \\ x_3\\ x_4 \end{bmatrix}⎣⎡x1x2x3x4⎦⎤ =[−1−1−11]=\begin{bmatrix} -1\\ -1 \\ -1\\ 1 \end{bmatrix}=⎣⎡−1−1−11⎦⎤
Hence, it is much better for the null space =[−1−1−11]=\begin{bmatrix} -1\\ -1 \\ -1\\ 1 \end{bmatrix}=⎣⎡−1−1−11⎦⎤
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments