Let the matrix is A = [ 1 0 0 1 0 1 0 1 0 0 1 1 ] A=\begin{bmatrix}
1 & 0 & 0 & 1\\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 1
\end{bmatrix} A = ⎣ ⎡ 1 0 0 0 1 0 0 0 1 1 1 1 ⎦ ⎤
Basis for row space of A = { [ 1 0 0 1 ] , [ 0 1 0 1 ] , [ 0 0 1 1 ] } A=\begin{Bmatrix}
[1 & 0 & 0 & 1], [0 & 1 & 0 & 1],[0 & 0 & 1 & 1]
\end{Bmatrix} A = { [ 1 0 0 1 ] , [ 0 1 0 1 ] , [ 0 0 1 1 ] }
In the 1, 2 and 3, it contains pivot hence,
= { [ 1 0 0 0 1 0 0 0 1 ] } =\{\begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{bmatrix}\} = { ⎣ ⎡ 1 0 0 0 1 0 0 0 1 ⎦ ⎤ }
If A x = 0 Ax=0 A x = 0
[ x 1 x 2 x 3 x 4 ] \begin{bmatrix}
x_1\\
x_2 \\
x_3\\
x_4
\end{bmatrix} ⎣ ⎡ x 1 x 2 x 3 x 4 ⎦ ⎤ = [ − 1 − 1 − 1 1 ] =\begin{bmatrix}
-1\\
-1 \\
-1\\
1
\end{bmatrix} = ⎣ ⎡ − 1 − 1 − 1 1 ⎦ ⎤
Hence, it is much better for the null space = [ − 1 − 1 − 1 1 ] =\begin{bmatrix}
-1\\
-1 \\
-1\\
1
\end{bmatrix} = ⎣ ⎡ − 1 − 1 − 1 1 ⎦ ⎤
Comments