Question #148899

Show that the map : T : R4 -3 R2 given by

T(x1 , x2, x3, x4) = (2x1 + x3, 2x3 + x1) is a linear transformation. Find its image and the kernel.


1
Expert's answer
2020-12-08T05:15:29-0500

Let us show that the map T:R4R2T : \mathbb R^4\to\mathbb R^2 given by T(x1,x2,x3,x4)=(2x1+x3,2x3+x1)T(x_1, x_2, x_3, x_4) = (2x_1 + x_3, 2x_3 + x_1) is a linear transformation:


T(a(x1,x2,x3,x4)+b(y1,y2,y3,y4))=T(ax1+by1,ax2+by2,ax3+by3,ax4+by4)=(2(ax1+by1)+ax3+by3,2(ax3+by3)+ax1+by1)=(2ax1+2by1+ax3+by3,2ax3+2by3+ax1+by1)=(2ax1+ax3,2ax3+ax1)+(2by1+by3,+2by3+by1)=a(2x1+x3,2x3+x1)+b(2y1+y3,+2y3+y1)=aT(x1,x2,x3,x4)+bT(y1,y2,y3,y4).T(a(x_1, x_2, x_3, x_4)+b(y_1, y_2, y_3, y_4)) =T(ax_1+by_1, ax_2+by_2, ax_3+by_3, ax_4+by_4) = (2(ax_1+by_1) + ax_3+by_3, 2(ax_3+by_3) + ax_1+by_1)=(2ax_1+2by_1 + ax_3+by_3, 2ax_3+2by_3 + ax_1+by_1)= (2ax_1+ ax_3, 2ax_3+ax_1)+(2by_1+by_3, +2by_3 +by_1)=a(2x_1+ x_3, 2x_3+x_1)+b(2y_1+y_3, +2y_3 +y_1)=aT(x_1, x_2, x_3, x_4)+bT(y_1, y_2, y_3, y_4).


Let us find its kernel:


ker(T)={(x1,x2,x3,x4)R4  T(x1,x2,x3,x4)=(0,0)}=\ker(T)=\{ (x_1, x_2, x_3, x_4)\in\mathbb R^4\ |\ T(x_1, x_2, x_3, x_4)=(0,0) \} =


={(x1,x2,x3,x4)R4  (2x1+x3,2x3+x1)=(0,0)}==\{ (x_1, x_2, x_3, x_4)\in\mathbb R^4\ |\ (2x_1 + x_3, 2x_3 + x_1)=(0,0) \} =


={(x1,x2,x3,x4)R4  2x1+x3=0 and 2x3+x1=0}==\{ (x_1, x_2, x_3, x_4)\in\mathbb R^4\ |\ 2x_1 + x_3=0\text{ and }2x_3 + x_1=0 \} =


={(x1,x2,x3,x4)R4  x3=2x1 and 3x1=0}==\{ (x_1, x_2, x_3, x_4)\in\mathbb R^4\ |\ x_3= -2x_1\text{ and }-3x_1 =0 \} =


={(x1,x2,x3,x4)R4  x1=0 and x3=0}==\{ (x_1, x_2, x_3, x_4)\in\mathbb R^4\ |\ x_1=0\text{ and }x_3 =0 \} =


={(0,x2,0,x4)  x2,x4R}=\{ (0, x_2, 0, x_4)\ |\ x_2,x_4\in\mathbb R\}.


Let us find its image. For this it is sufficient to find all (a,b)R2(a,b)\in\mathbb R^2 such that T(x1,x2,x3,x4)=(a,b)T(x_1, x_2, x_3, x_4) =(a,b), that is the system


{2x1+x3=ax1+2x3=b\begin{cases}2x_1 + x_3=a\\ x_1 + 2x_3=b\end{cases} has a solution.


Since 2112=41=30\left|\begin{array}{cc}2 & 1\\1 &2\end{array}\right|=4-1=3\ne 0, this system has a solution for all all (a,b)R2(a,b)\in\mathbb R^2

Therefore, T is a surjection, that is Im(T)=R2.Im(T)=\mathbb R^2.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS