Let us show that the map T : R 4 → R 2 T : \mathbb R^4\to\mathbb R^2 T : R 4 → R 2 given by T ( x 1 , x 2 , x 3 , x 4 ) = ( 2 x 1 + x 3 , 2 x 3 + x 1 ) T(x_1, x_2, x_3, x_4) = (2x_1 + x_3, 2x_3 + x_1) T ( x 1 , x 2 , x 3 , x 4 ) = ( 2 x 1 + x 3 , 2 x 3 + x 1 ) is a linear transformation:
T ( a ( x 1 , x 2 , x 3 , x 4 ) + b ( y 1 , y 2 , y 3 , y 4 ) ) = T ( a x 1 + b y 1 , a x 2 + b y 2 , a x 3 + b y 3 , a x 4 + b y 4 ) = ( 2 ( a x 1 + b y 1 ) + a x 3 + b y 3 , 2 ( a x 3 + b y 3 ) + a x 1 + b y 1 ) = ( 2 a x 1 + 2 b y 1 + a x 3 + b y 3 , 2 a x 3 + 2 b y 3 + a x 1 + b y 1 ) = ( 2 a x 1 + a x 3 , 2 a x 3 + a x 1 ) + ( 2 b y 1 + b y 3 , + 2 b y 3 + b y 1 ) = a ( 2 x 1 + x 3 , 2 x 3 + x 1 ) + b ( 2 y 1 + y 3 , + 2 y 3 + y 1 ) = a T ( x 1 , x 2 , x 3 , x 4 ) + b T ( y 1 , y 2 , y 3 , y 4 ) . T(a(x_1, x_2, x_3, x_4)+b(y_1, y_2, y_3, y_4)) =T(ax_1+by_1, ax_2+by_2, ax_3+by_3, ax_4+by_4) = (2(ax_1+by_1) + ax_3+by_3, 2(ax_3+by_3) + ax_1+by_1)=(2ax_1+2by_1 + ax_3+by_3, 2ax_3+2by_3 + ax_1+by_1)=
(2ax_1+ ax_3, 2ax_3+ax_1)+(2by_1+by_3, +2by_3 +by_1)=a(2x_1+ x_3, 2x_3+x_1)+b(2y_1+y_3, +2y_3 +y_1)=aT(x_1, x_2, x_3, x_4)+bT(y_1, y_2, y_3, y_4). T ( a ( x 1 , x 2 , x 3 , x 4 ) + b ( y 1 , y 2 , y 3 , y 4 )) = T ( a x 1 + b y 1 , a x 2 + b y 2 , a x 3 + b y 3 , a x 4 + b y 4 ) = ( 2 ( a x 1 + b y 1 ) + a x 3 + b y 3 , 2 ( a x 3 + b y 3 ) + a x 1 + b y 1 ) = ( 2 a x 1 + 2 b y 1 + a x 3 + b y 3 , 2 a x 3 + 2 b y 3 + a x 1 + b y 1 ) = ( 2 a x 1 + a x 3 , 2 a x 3 + a x 1 ) + ( 2 b y 1 + b y 3 , + 2 b y 3 + b y 1 ) = a ( 2 x 1 + x 3 , 2 x 3 + x 1 ) + b ( 2 y 1 + y 3 , + 2 y 3 + y 1 ) = a T ( x 1 , x 2 , x 3 , x 4 ) + b T ( y 1 , y 2 , y 3 , y 4 ) .
Let us find its kernel:
ker ( T ) = { ( x 1 , x 2 , x 3 , x 4 ) ∈ R 4 ∣ T ( x 1 , x 2 , x 3 , x 4 ) = ( 0 , 0 ) } = \ker(T)=\{ (x_1, x_2, x_3, x_4)\in\mathbb R^4\ |\ T(x_1, x_2, x_3, x_4)=(0,0) \} = ker ( T ) = {( x 1 , x 2 , x 3 , x 4 ) ∈ R 4 ∣ T ( x 1 , x 2 , x 3 , x 4 ) = ( 0 , 0 )} =
= { ( x 1 , x 2 , x 3 , x 4 ) ∈ R 4 ∣ ( 2 x 1 + x 3 , 2 x 3 + x 1 ) = ( 0 , 0 ) } = =\{ (x_1, x_2, x_3, x_4)\in\mathbb R^4\ |\ (2x_1 + x_3, 2x_3 + x_1)=(0,0) \} = = {( x 1 , x 2 , x 3 , x 4 ) ∈ R 4 ∣ ( 2 x 1 + x 3 , 2 x 3 + x 1 ) = ( 0 , 0 )} =
= { ( x 1 , x 2 , x 3 , x 4 ) ∈ R 4 ∣ 2 x 1 + x 3 = 0 and 2 x 3 + x 1 = 0 } = =\{ (x_1, x_2, x_3, x_4)\in\mathbb R^4\ |\ 2x_1 + x_3=0\text{ and }2x_3 + x_1=0 \} = = {( x 1 , x 2 , x 3 , x 4 ) ∈ R 4 ∣ 2 x 1 + x 3 = 0 and 2 x 3 + x 1 = 0 } =
= { ( x 1 , x 2 , x 3 , x 4 ) ∈ R 4 ∣ x 3 = − 2 x 1 and − 3 x 1 = 0 } = =\{ (x_1, x_2, x_3, x_4)\in\mathbb R^4\ |\ x_3= -2x_1\text{ and }-3x_1 =0 \} = = {( x 1 , x 2 , x 3 , x 4 ) ∈ R 4 ∣ x 3 = − 2 x 1 and − 3 x 1 = 0 } =
= { ( x 1 , x 2 , x 3 , x 4 ) ∈ R 4 ∣ x 1 = 0 and x 3 = 0 } = =\{ (x_1, x_2, x_3, x_4)\in\mathbb R^4\ |\ x_1=0\text{ and }x_3 =0 \} = = {( x 1 , x 2 , x 3 , x 4 ) ∈ R 4 ∣ x 1 = 0 and x 3 = 0 } =
= { ( 0 , x 2 , 0 , x 4 ) ∣ x 2 , x 4 ∈ R } =\{ (0, x_2, 0, x_4)\ |\ x_2,x_4\in\mathbb R\} = {( 0 , x 2 , 0 , x 4 ) ∣ x 2 , x 4 ∈ R } .
Let us find its image. For this it is sufficient to find all ( a , b ) ∈ R 2 (a,b)\in\mathbb R^2 ( a , b ) ∈ R 2 such that T ( x 1 , x 2 , x 3 , x 4 ) = ( a , b ) T(x_1, x_2, x_3, x_4) =(a,b) T ( x 1 , x 2 , x 3 , x 4 ) = ( a , b ) , that is the system
{ 2 x 1 + x 3 = a x 1 + 2 x 3 = b \begin{cases}2x_1 + x_3=a\\ x_1 + 2x_3=b\end{cases} { 2 x 1 + x 3 = a x 1 + 2 x 3 = b has a solution.
Since ∣ 2 1 1 2 ∣ = 4 − 1 = 3 ≠ 0 \left|\begin{array}{cc}2 & 1\\1 &2\end{array}\right|=4-1=3\ne 0 ∣ ∣ 2 1 1 2 ∣ ∣ = 4 − 1 = 3 = 0 , this system has a solution for all all ( a , b ) ∈ R 2 (a,b)\in\mathbb R^2 ( a , b ) ∈ R 2
Therefore, T is a surjection, that is I m ( T ) = R 2 . Im(T)=\mathbb R^2. I m ( T ) = R 2 .
Comments